Cloud Based Architectures in Ground Systems of Space Missions

M. Sarkarati, M. Merri, M. Spada
HSO-GDA
ESA/ESOC
The copyright of this document is vested in the European Space Agency. This document may only be reproduced in whole or in part, stored in a retrieval system, transmitted in any form, or by any means electronically, mechanically, or by photocopying, or otherwise, with the prior written permission of the Agency.
Cloud Computing is a paradigm for service delivery and deployment with the following characteristics:

- **On-Demand Self-Service**
- **Broad Network Access**
- **Resource Pooling**
- **Rapid Elasticity**
- **Measured Service**

Definition by National Institute for Standards and Technology (NIST)
Which Cloud?

Service Models:
- Software as a Service (SaaS)
- Platform as a Service (PaaS)
- Infrastructure as a Service (IaaS)

Deployment Models:
- Public
- Private
- Hybrid
- Community

* Definition by National Institute for Standards and Technology (NIST)
Challenges Of Modern Ground Data Systems

- **Distribution** and **location independency** of ground data systems
- **High Availability** of ground segment services to the user community
- **Scalability** and increasing demand on computing resources
- Utilisation of e2e **Off-The-Shelf solutions** for common IT tasks
- **Federation** of disperse solutions, System of Systems (**SoS**)
- Moving towards Service Oriented Architectures (**SOA**)
- **Security** and risk management awareness
- **Baseline Management** of a large number of systems
Cloud As An Architectural Design Paradigm

- Cloud computing is not just a technology. It is an architectural design paradigm.
- CC can often not be applied on top and must be built into the architectural design.
- The higher you go in the service model pyramid (PaaS/SaaS) the more this is true.

- Basic principle of **Simple Design**
 - Some sources of complex design delegated to lower level cloud services
 - Performance and optimisation
 - Multi-threading, caching, session management
 - Failure tolerance, Redundancy Load Balancing

- Design to run on a Cloud Platform
 - Google App Engine, SalesForce.com
 - AWS: design and deployment (work flows, ...)
 - Hadoop HDFS and Map-Reduce
 - Google Bigtable and Amazon SimpleDB
Design Principles For The Cloud

- Net-Centric Communication
 - Don’t use File based or inter-process communication
- Principles of service oriented design (SOA)
 - Loose coupling
 - Standardised service contracts
 - Statelessness
 - Autonomy
 - Abstraction
 - Discoverability
 - Reusability
 - Composability
- Built-in security and virtual appliances
- Management and measuring interfaces
- Design to cost
Example Of The Impact On The Design: Hadoop In The Cloud

- Apache Hadoop Framework:
 - Distributed File System HDFS
 - Job Scheduling and Cluster Management
 - Automatic handling of node failures

- Map-Reduce:
 - Map(k1,v1) → list(k2,v2)
 - Reduce(k2, list(v2)) → list(v3)

Source: http://en.wikipedia.org/wiki/MapReduce
Transition To A Cloud Solution: The Case Of SIMULUS

- SIMULUS: Generic multi-purpose simulation platform
- Standardised Platform services (Scheduling, Logging, Eventing, Breakpointing ...)
- Simulation Model Portability Standard SMP-2
- Generic models reusable cross mission in operational simulators
- Systematic cloudability analysis of select ground data systems in 2010-2011
- Candidates for each cloud service/deployment model identified

Diagram:

- SMP-2
- SIMSAT
- COTS
- HW / OS

ESAS unclassified –for public use | GSW 2013 | M. Sarkarati, M. Merri, M. Spada | Pag. 9
The Case Of SIMULUS
Step -2 : Evolution towards PaaS/SaaS

Current

- Mission Specific Sim Models
- Generic Models
- SIMSAT
- Additional Packages, COTS
- Operating System
- Virtualization
- Servers
- Storage
- Network
- Data Centre

Managed manually per mission

End-to-End CC Service

PaaS/SaaS

- Mission Specific Sim Models
- SIMSAT
- Additional Packages, COTS
- Operating System
- Virtualization
- Servers
- Storage
- Network
- Data Centre

Managed manually per mission

Requires changes at application level

- All advantages of IaaS
- Elasticity at SIMSAT level
- Sharing of one SIMSAT Runtime Platform across missions
- Rapid validation of new versions of the platform
Transition To A Cloud Solution:
The Case Of SIMULUS PaaS/SaaS

- For IaaS service model on a private cloud → No changes on SIMULUS side
- For PaaS and SaaS → Changes on SIMULUS design and implementation
 - New concepts for user management
 - New concepts for resource management
 - New concepts of workspaces and separated simulation sessions
 - New concepts for deployment of simulation models onto the platform
 - New concepts for data and file sharing
 - Enhancements to clients (Man-Machine Interfaces)
- Generic models → SaaS
 - New concepts for dependency configuration
 - New concepts for deployment of generic models
Take Aways

- Cloud Computing is not just a technology but an architectural paradigm
- Cloud Computing solutions expose certain common characteristics (NIST)
- Do not sell refrigerator to Eskimos (Apply Cloud where you can benefit)
- Cloud Computing can often not be added “on-the-top”
- It must be built in the Architectural design of the system
- Moving a legacy system to Cloud does often require changes at some level
- The higher you go in the Cloud service model the more changes are needed
- Perform systematic cloudability analysis and pick the applications which
 - Are most suitable for a certain cloud model
 - Have the highest potential in benefiting from Cloud characteristics
Thank you

ESA/ ESOC
M. Sarkarati, M. Merri, M. Spada
Email: firstname.lastname@esa.int
Design To Fail

- Capability Decomposition → Autonomous, loosely coupled Services
- Net-Centric asynchronous communications (with queuing)
- Failure isolation → ICT Failure in one node does not propagate to other nodes
- Fast Recovery and redundancy provided by the cloud
 - Fully automated provisioning of services
 - Services must be able to re-configure automatically and join the application
- Statelessness and state deferral
- Much lower impact of failure as only limited nr of users are impacted