Stovepipes to Clouds

Rick Reid
Principal Engineer
SGI Federal

Agenda

- Stovepipe Characteristics
- Why we Built Stovepipes
- Cluster Characteristics
- Why we are Moving to Clusters
- Cloud Characteristics
- Why we May Not Move to Clouds
- Summary

Stovepipe Characteristics

- Numerous Servers
 - Performance, Normal and Custom Variations
- Primarily Global Data Access
 - SAN or NAS
- Proprietary File Systems
- Proprietary O/S
- Custom SMP code
- Expensive

Why we built stovepipes

Requirements

- Performance, performance,
 - Fastest servers available
 - 32 to 64 sockets / cores, < 50 GF
 - 1 GB memory per core
 - I/O FDDI, HIPPI, FC, GbE, ATM
 - All < 1 Gb/s
 - Custom code (SMP)
 - Proprietary OS and file systems
 - Custom H/W

Reliability

- Dual capture
- 2n server redundancy
- Single function, hot standby

Cluster Characteristics

Numerous Servers

- Performance and General node types
- Improved node packaging
- Fewer, smaller, faster Servers
- n+m redundancy
- Primarily Global Data Access
 - SAN or NAS
 - Faster networks
- Proprietary or Open Source File Systems
- Linux
- Custom SMP code (for ground stations anyway)
- Less Expensive
 - Power, cooling, floor space, maintenance

Why we are Moving to Clusters

- Numerous Servers
 - Improved node packaging
 - n+m redundancy
- Faster Networks
 - 10 GbE moving to 100 GbE
 - IB FDR moving to EDR
- Lustre / NFS
- Linux
- Existing SMP code ports easily
- Less Expensive
 - Power, cooling, floor space, maintenance

Intel's Tick/Tock Roadmap

Tick – Lead vehicle on new manufacturing process, modest change Tock – Opportunity for significant change

Intel EP Socket Roadmap

Cluster - General Server

- 4 servers in a 2U node (hot-pluggable)
- Intel Xeon SB 2S-EP
 - 16 cores / 32 threads per node
 - 371.2 GF per node
 - 1.485 TF per server
- 512 GB memory capacity per node
 - 16 DIMMs per node (1600MHz)
 - 2TB memory capacity per server
- PCIe Gen3 I/O
 - One x16 (low-profile) slot per server
 - 4 2.5" drives per server
- Redundant power supplies

Cluster - Performance Server

- Intel Xeon Sandy Bridge 4S-EP
 - 32 cores / 64 threads
 - 742 GF
 - Up to 130W support
- 1.536 TB memory capacity
 - 48 DIMMs DDR3 (1600MHz)
- PCIe Gen3 I/O
 - Two PCle3 x48 Risers
 - Four x16 slots (FLFH or HLFH)
 - Two x16 internal slots (HLFH)
 - Two I/O x8 modules

Cloud Properties - Key Requirements

Lowest platform cost must also achieve these goals:

- 1. Unlimited scaling without interruption
 - The Cloud must be expandable seamlessly
- 2. No down-time = 100% Availability of service
 - No one will TRUST a cloud if it goes down
- 3. Zero lost data
 - No one will TRUST a cloud if it loses data
- 4. Cost-of-service must be an order of magnitude less than the traditional compute-data approach.
- 5. Security must be acceptable for the users information
 - Trust is mandatory therefore security tools must provide higher security than a closed system has ever had to deal with.

Internet Cloud Characteristics

- No RAID Cards, all storage is JBOD
- No virtualization
- Cloud providers are driven to the lowest cost of ownership
 - Power cost
 - Footprint cost
 - Cooling cost
 - Purchase cost
 - Labor cost for maintenance
 - Cost of upgrading hardware (all of the above) every 3 years or whenever the cost of operations exceeds the cost of upgrading/performance
- Balanced hardware configurations: cores to spindles to GB Memory
 - Keep a general purpose consistent hardware infrastructure across all data centers
 - There should be no difference in performance and jobs can be reliably moved to any server
 - Scalability is the key to maintaining the lowest cost of ownership
- All Remote Bootable
- No DVD drives in any server
- No extra gear of any kind in any server
- Memory is typically 4GB per core using 8GB DIMMS to keep power as low as possible.
- Cloud providers are weighing the cost, the performance and the cost of operation against the full cost of ownership over multiple years.

Internet Cloud – Required a New Approach

<u>Unlimited</u>, seamless-scaling required a change

Traditional IT "enterprise" approach to compute-storage platforms:

- Send the data to the question for processing
 - Pull the data into compute then return the answers to storage when finished
 - Expensive, large-redundancy-rich compute platforms run queries and processing
 - The associated storage platforms are very robust and redundant
 - Compute is compute, storage is storage and processing is done at the compute side with the data moving across a fast and redundant storage network.

Internet-Cloud platforms required a different approach:

- Send the question to the data, not the data to the question!
 - Enter Hadoop/MapReduce and all the attendant tools
 - In order to scale seamlessly the cloud required a continuing expansion of the compute and storage with standard building blocks at the lowest total cost
 - The building blocks must be added to a running system providing both compute and storage increments in a predictable and useable manner
 - All building blocks must run the same file system and OS platform
 - All storage must have maximum speed per \$ spent and 100% reliability
 - Speed measured is from the CPU to the data (no networking makes that faster) DAS
 - No RAID at the hardware level slows down data flow to CPU
 - Software RAID at the File System level across multiple server-DAS at multiple locations

Why We May Not Move to Clouds

- Servers with special needs
 - Custom I/O
 - Performance nodes
 - Reliability and failover capability
- No global I/O accessibility
- Interconnect generally 1 GbE or 10 GbE

Summary

- Technology will provide powerful enough nodes
- SMP code probably does not have to be ported
- Linux rules
- Open source globally addressable storage (SAN or NAS) is usually not available in a cloud
- Moving from a stovepipe to a cluster (FLOP for FLOP) will result in facility and maintenance savings over 3 years that will pay for the replacement systems

Thank You

Questions

Backup Charts

InfiniBand Link Speed Roadmap

I/O Busses and Networks

PCI Express 2.0

- 1, 2, 4, 8, 12, 16, or 32 dual simplex 500 MB/s lanes (400 MB/s effective)
- 8x = 4 GB/s (3.2 GB/s effective)
- 16x = 8 GB/s (6.4 GB/s effective)

PCI Express 3.0

• Each lane is 1 GB/s (800 MB/s effective)

INFINIBAND

```
• 4x = 10 \text{ Gb/s} DDR = 20 Gb/s QDR = 40 Gb/s FDR = 56 Gb/s
```

- 8x = 20 Gb/s DDR = 40 Gb/s QDR = 80 Gb/s
- 12x = 30 Gb/s DDR = 60 Gb/s QDR = 120 Gb/s

• Fibre Channel

- FC4 = 400 MB/s
- FC8 = 800 MB/s
- FC16 = 1600 MB/s

Ethernet

- 1 Gb/s
- 10 Gb/s
- 40 Gb/s (4 x 10 GB/s per lane, QFSP)
- 100 Gb/s (4 x 25 GB/s, QFSP)