
An Increase in Software Testing
Robustness: Enhancing the g
Software Development Standard for
Space Systems

Karen Owens and Suellen Eslinger
Software Engineering SubdivisionSoftware Engineering Subdivision

Computers and Software Division

15th Ground System Architectures Workshop (GSAW)

Computers and Software Division
The Aerospace Corporation

© The Aerospace Corporation 2011

Outline

• Software mission assurance
• Evolving software testing requirements• Evolving software testing requirements
• Lessons learned
• Levels of software testingLevels of software testing
• Proposed enhancements for software testing

– Consistency across test levels
– Parallel subsections
– Definitions
– Operations-like test environment p
– Enumerated requirements
– Reduce redundant requirements

2

Software Mission Assurance

• Software mission assurance requires two essential
components:components:
1. Building quality in throughout the entire development life cycle

• Using techniques focused on finding and removing defects within
each development activityeach development activity

• Example techniques: peer reviews, product evaluations, joint
technical reviews, and software quality audits

2 Conducting a robust software test program2. Conducting a robust software test program
• Focused on finding defects that escaped the quality gates for

earlier software development activities

• This paper focuses on the second component• This paper focuses on the second component
– Requirements proposed for the next revision of the Software

Development Standard for Space Systems (SDSSS) targeted
toward ensuring that a robust software test program istoward ensuring that a robust software test program is
implemented

3

Evolving Software Test Requirements

• MIL-STD-498, “Software Development and
Documentation” updated inDocumentation updated in

• R. J. Adams, S. Eslinger, P. Hantos, K. L. Owens, L. T. g
Stephenson, J. M. Tagami, and R. Weiskopf. “Software
Development Standard for Space Systems.” TOR-
2004(3909)-3537 Revision B The Aerospace2004(3909)-3537 Revision B, The Aerospace
Corporation, 11 March 2005, SMC-S-012

• Proposed enhancements for Revision C

4

Lessons Learned

Requiring standards on contracts improved testing rigor
However testing still needs more improvementHowever, testing still needs more improvement
• Testing starts late due to many factors (e.g., trying to

finish sooner without mission assurance measures)
• Quality of software entering various levels of testing is

often lower than expected
• Contractor and Acquirer discuss how much testing is• Contractor and Acquirer discuss how much testing is

enough – late in the testing
• Later phase testing discovers defects that could have

b f d i i i ibeen found in peer reviews or unit testing
• Test and fix cycle keeps going, thus delaying system

integration, and in some cases, launchintegration, and in some cases, launch

5

Four Required Levels of Software Testing

S f
Testing to verify that the implementation

f f ()Software Unit Testing of the software unit (code, scripts, etc.)
performs as designed

Software Unit Integration Testing to verify that the integratedSoftware Unit Integration
and Testing

Testing to verify that the integrated
software units perform as designed

S ft H d Testing to verify that the integrated Software-Hardware
Integration and Testing

g y g
hardware and software items perform as
designed

Software Item
Qualification Testing

Testing to verify that the software
satisfies its requirements

6

Four Required Levels of Software Testing

S f
Testing to verify that the implementation

f f ()Software Unit Testing of the software unit (code, scripts, etc.)
performs as designed

Software Unit Integration Testing to verify that the integratedSoftware Unit Integration
and Testing

Testing to verify that the integrated
software units perform as designed

S ft H d Testing to verify that the integrated Software-Hardware
Integration and Testing

g y g
hardware and software items perform as
designed

Software Item
Qualification Testing

Testing to verify that the software
satisfies its requirements

7

Proposed Enhancements

• Divide testing requirements at each level into consistent
subsections to reduce redundant requirements
1. Independence in testing (only for qualification testing)
2. Testing on the target computer system
3 Preparing for testing3. Preparing for testing
4. Dry run of testing (only for qualification testing)
5. Performing testing
6 A l i d di t t lt d l i6. Analyzing and recording test results and analysis
7. Regression testing
8. Revision and retesting

• Define several terms
• Add more operations-like test environment requirements
• Split multipart “shall”s into separate statements or lettered itemsSplit multipart shall s into separate statements or lettered items

8

Note: Test planning and traceability are not discussed in this briefing

Problem: Inadequate number of types of
test cases and number of test cases

• Test coverage was neither complete nor representative
of the range of operational situationsof the range of operational situations

• Contractor and Acquirer discuss whether the set of test
cases was complete – LATE in the testing cycle

• Solutions
– Involve testers to review requirements during requirements

developmentdevelopment
– Define “representative set”, “equivalence class”, and

“reusable software”, and other terms
– Determine test case completeness during development and test– Determine test case completeness during development and test

planning
– Review the representative sets and tests in the test plans and

descriptionsdescriptions

9

Definitions - 1

Representative set.
• A set of values that is representative of the distribution of values or

diticonditions
• The size of the set (i.e., the quantity of the values) within each

equivalence class is dependent on the software item in question
d th i d l l f fid f f l tiand the required level of confidence for successful execution

• The size of the set is defined in:
1) the acquirer-approved software development plan, and
2) the software unit, integration, and qualification test plans based

on the number of equivalence classes
• As a default, the data sample should be of a size such that a 90% , p

confidence* of successful execution can be established for each
equivalence class given that no failures are observed during the
testing

10

* Reference: National Institute of Standards and Technology (NIST),
"Engineering Statistics Handbook", Chapter 1 and Chapter 6, Section 2

Definitions - 2

• Equivalence class. An input set ("class") in which all elements
cause the same ("equivalent") execution path, regardless of which
element from the class is chosen.

• Reusable software. Software developed for one use but having p g
other uses, or developed specifically to be usable on multiple
projects or in multiple roles on one project. Each use may include
all or part of the software product and may involve its modification.
Examples of reusable software include, but are not limited to:
– pre-existing developer software
– software in reuse libraries
– Government Off-The-Shelf (GOTS) software
– acquirer-furnished software

open source software (OSS) and– open source software (OSS) and
– Commercial Off-The-Shelf (COTS) software

11

Consistency Across Test Levels
Using representative sets of nominal and off-
nominal conditions the test cases shall cover,

as a minimum, correct execution of all:
Unit

Testing
Unit Integ

and
Testing

Software-
Hardware
Integ and
Testing

Software
Item Qual
Testing

Algorithms X NEW NEW

Using representative sets of nominal and off-
nominal conditions the test cases shall cover,

as a minimum, correct execution of all:
Unit

Testing
Unit Integ

and
Testing

Software-
Hardware
Integ and
Testing

Software
Item Qual
Testing

Algorithms X NEW NEWg X NEW NEW
Software requirements allocated to the [software
unit(s) (or portion thereof), hardware unit(s),
software item] under test

NEW X X X

St t t d b h X

g X NEW NEW
Software requirements allocated to the [software
unit(s) (or portion thereof), hardware unit(s),
software item] under test

NEW X X X

St t t d b h XStatements and branches X

End-to-end functional capabilities through the
[software units, software items, hardware items]
under test

X X X

Statements and branches X

End-to-end functional capabilities through the
[software units, software items, hardware items]
under test

X X X

Interfaces among the software [and hardware
units or items] under test X X X X

Software interfaces external to the [unit or
software item] under test NEW X

Interfaces among the software [and hardware
units or items] under test X X X X

Software interfaces external to the [unit or
software item] under test NEW NEW NEW Xsoftware item] under test
Integrated error and exception handling across
the [software units, hardware units, software
item] under test

Error &
exception
handling

Integrated Integrated Integrated

Fault detection isolation and recovery handling

software item] under test
[Integrated] error and exception handling across
the [software units, hardware units, software
item] under test

Error &
exception
handling

within unit
Integrated Integrated Integrated

Fault detection isolation and recovery handlingFault detection, isolation, and recovery handling
(e.g., fault tolerance, fail over, data capture and
reporting)

NEW X X X

12 Note: Bold text in first column indicates changes or additions.

Fault detection, isolation, and recovery handling
(e.g., fault tolerance, fail over, data capture and
reporting)

NEW X X X

Consistency Across Test Levels (Cont.)
Using representative sets of nominal and off-
nominal conditions the test cases shall cover,

as a minimum, correct execution of all:
Unit

Testing
Unit Integ

and
Testing

Software-
Hardware
Integ and
Testing

Software
Item Qual
Testing

Start-up, termination, and restart (when X X X NEWStart up, termination, and restart (when
applicable)

X X X NEW

Performance testing, including timing and
accuracy requirements

X X NEW

Resource utilization measurement (e.g., Central
Processing Unit (CPU), memory, storage,
bandwidth)

X X X

Stress testing, including worst-case scenarios g g
(e.g., extreme loads, frequency of inputs and
events, large number of users, simulated
failed hardware, missing interfaces)

MOD MOD MOD

Software specialty engineering requirements y g g
(e.g., supportability, testability, dependability,
reliability, maintainability, availability, safety,
security, and human system integration, as
applicable), including, in particular, verification of
software reliability requirements

NEW NEW X

software reliability requirements
Endurance testing using normal and heavy
operational workloads

NEW NEW NEW
13 Note: Bold text in first column indicates changes or additions.

More Operations-like Test Environment

Requirements by Level
Unit Integ

and
Testing

Software-
Hardware
Integ and
Testing

Software
Item Qual
Testing

1Perform testing using the target computer system X1 X X

Have the target computer system be as close as
possible to the operational target hardware X X X

Configure the target computer system to be as close as
possible to the operational configuration X X X

Conduct all testing under conditions as close as
possible to those that the software will encounter in thepossible to those that the software will encounter in the
operational environment (e.g., operational data
constants, operational input and output data rates,
operational scenarios)

X

Use actual interfaces wherever possible NEW NEW X

If using actual interfaces is not possible for software
item qualification testing, then use simulations of the NEW NEW

MOD
validated

high-item qualification testing, then use simulations of the
interfaces

NEW NEW high
fidelity

simulations

14

1 Unit I & T may begin in the development environment, but it generally transitions to the target computer
system in the software I & T environment as larger sets of software and the hardware become available.

More Operations-like Test Environment (Cont.)

Requirements by Level
Unit Integ

and
Testing

Software-
Hardware
Integ and
Testing

Software
Item Qual
Testing

P f t ti ith th ti ft it dPerform testing with the entire software item under
test (including newly developed software, COTS
software, and all other modified and unmodified
reusable software), installed in the target computer

NEW
), g p

system
Perform testing with the target computer system in
the operational software configuration, including all
other software executing on that system in addition
to the software item under test (e.g., operating
system, COTS software, and other software items)

NEW

The target computer system and configuration usedThe target computer system and configuration used
for testing is subject to approval by the acquirer NEW

The operational environment for testing (e.g.,
operational data constants operational input andoperational data constants, operational input and
output data rates, operational scenarios) is subject
to approval by the acquirer

NEW

15 Note: Bold text in first column indicates changes or additions.

Enhancements for Software Unit Testing
Reusable Software

• The following reusable software within the unit shall be tested as part of
unit testing:
a) all modified reusable software
b) all reusable software where the track record indicates potential

problems (even if the reusable software has not been modified) p ()
c) reusable software which has record of being inadequately unit

tested and
d) all critical reusable software (even if the reusable software has notd) all critical reusable software (even if the reusable software has not

been modified).
• When source code for reusable software is not available, then that

reusable software is not required to be unit testedreusable software is not required to be unit tested

16

Conclusion

• A robust software testing program is an essential component of
software mission assurance

• The proposed updates to Software Development Standard for
Space Systems”, TOR-2004(3909)-3537, Revision B contain
dditi l ft t ti i t t th t b tadditional software testing requirements to ensure that a robust

software testing program is implemented
– Over and above the original requirements in MIL-STD-498 and

O d b th i R i i B– Over and above those in Revision B

• These additional software testing requirements are designed to
improve software mission assurance based onimprove software mission assurance, based on
– Experience from multiple space programs
– Documented results from the software engineering literature

17

Feedback?

• We welcome your feedback
– In the software testing workshop later in the weekIn the software testing workshop later in the week
– Using our contact information on the last slide
– At a break

18

Karen Owens, Senior Project Leader, j
Software Acquisition and Process Department

Suellen Eslinger, Distinguished Engineer
Software Engineering SubdivisionSoftware Engineering Subdivision

Computers and Software Division
The Aerospace Corporation
2011 03 302011-03-30
karen.l.owens@aero.org, suellen.eslinger@aero.org
310.336-5909, 310.336-2906

Backup ChartsBackup Charts

Mission Assurance Definitions

• Mission success (MS) is the achievement by an acquired system (or
system of systems) to singularly or in combination meet not only
specified performance requirements but also the expectations of the
users and operators in terms of safety, operability, suitability and
supportability.
Mission success is typically evaluated after operational turnover and according to programMission success is typically evaluated after operational turnover and according to program
specific timelines and criteria, such as key performance parameters (KPPs). Mission
success assessments include operational assessments and user community feedback.

• Mission assurance (MA) is the disciplined application of general () p pp g
systems engineering, quality, and management principles towards the
goal of achieving mission success, and, toward this goal, provides
confidence in its achievement.

f fMA focuses on the detailed engineering of the acquired system and, toward this objective,
uses independent technical assessments as a cornerstone throughout the entire concept
and requirements definition, design, development, production, test, deployment, and
operations phases.

21

Reference: TOR-2007(8546)-6018, Revision A, “Mission Assurance Guide”, Edited by
Guarro, S. B., and W. F. Tosney, 1 July 2007, The Aerospace Corporation, pg. 1.

Acronyms and Abbreviations

• COTS Commercial-Off-The-Shelf
• GOTS Government Off The Shelf• GOTS Government-Off-The-Shelf
• Integ. Integration
• MIL MilitaryMIL Military
• NIST National Institute of Standards and Technology
• OSS Open source software
• Qual. Qualification
• S Standard
• SMC Space and Missile Systems Center
• STD Standard

TOR Technical Operating Report• TOR Technical Operating Report

22

