Cloudy Inside: Use of Cloud Computing in Ground Systems Development
Motivation

- Business considerations for a Ground System COTS vendor
 - Mission Critical applications
 - Any deployment, even a bug fix, must be tested in an integrated environment
 - Multiple Projects
 - The COTS model depends on having multiple customers to drive product evolution with new license purchases and support
 - Every customer’s concept of operations, and technical requirements, are different
 - Multiple Products
 - To be competitive the product suite must cover several application areas
 - Long support horizons
 - Customers are on separate upgrade cycles
 - Long periods of inactivity are punctuated by urgent requests

Bottom line:
Need to support customers efficiently and responsibly.
GMV’s Footprint

SCC: Satellite Control Centre (real time monitoring & control)
FDS / MPS: Flight dynamics / Mission Planning System
MA: Mission analysis
PMR: Payload management & reconfiguration
PDS/SOC/GMS: Payload Data Segment / Science Operations Centre, Ground Mission Segment

© GMV, 2011
Example Configuration

- Three simultaneous projects
 - A (products X & Y, Red Hat Linux 4 32 bit)
 - B (products X & Z, Red Hat Linux 4 64 bit)
 - C (products Y & Z, SUSE Linux 10 32 bit)

- Three versions per project
 - Deployed
 - Acceptance testing
 - Next release

- Three machines per version
 - Build
 - Server
 - Client
One Year Later

- Project A has entered long-term maintenance
- Project B is upgrading to SUSE Linux 11 64 bit
 - Deployed version will remain on SUSE 10 for one more year
- Project C has added redundancy requirements and will require a second server
Mismatch

- The numbers of required environments increases monotonically
 - Projects stay in support for a very long time
- Computer resource requirements are proportional to current workload
 - Developers and testers transition to new projects as old ones ramp down (i.e. team size is relatively constant)
 - New software versions tend to require more resources than old
- Space, power and money are scarce resources
 - Filling the office space with computers is not sustainable
 - Constantly reconfiguring the existing computers is not efficient

How do we scale the computing resources with the workload, and not with the environment count?
Enter the cloud

Enabling factors

- All configurations run on compatible hardware
 - 64 bit Intel processors (Core 2 and later)
 - New hardware is backwards compatible (i.e. old instruction sets supported)
- Available hardware exceeds required performance for all roles
 - Installable memory
 - Number of processor cores
- Hardware price/performance grows as fast as the workload
 - Lab workload grows with the requirements of new software versions, not with the number of projects

Approach:

- Size hardware for the current workload
- Configure a set of virtual machines for each project/version
 - Includes simulators for spacecraft and network link delays
- Run the appropriate sets of virtual machines for the current work
 - Automatic load balancing, or fixed configurations, as required
Lab Concept

Running Environments

Cloud

Stored Environments
Results

Moore's Law Wins

- Assumptions
 - 4 new projects/year, 1 year duration
 - Old projects require 1 month maintenance every year
 - 3 machines/project
 - 2 GB + 20%/year memory requirement per machine
 - Memory capacity doubles every two years (Moore’s law)
 - Individual machine $700 (2GB), Cloud server $5000 (16 GB)
Conclusion

- Ground Systems development has characteristics that cause proliferation of lab environments (build and test)
 - High degree of project-specific customization
 - Long-lived deployments
- Cloud computing enables efficient reuse of hardware
 - Similarly to how the team’s resources are allocated to projects according to their level of activity
 - Saves space, power and money
- This enables GMV to support a growing customer base efficiently and responsively

To the cloud!
Thank you