iCORE: A GEOINT Processing Framework and Incubator

GSAW, March 3, 2011

Thomas Kibalo, Principal Engineer/Scientist
Dr. B. Scott Michel, Department Director
Dr. Craig A. Lee, Senior Scientist, lee@aero.org
Nehal Desai, Engineering Specialist, Nehal.Desai@aero.org
Jacob Everist, Member of the Tech. Staff, Jacob.S.Everist@aero.org
The Aerospace Corporation

© The Aerospace Corporation 2011
Analytical Environment – The Current Paradigm

• “In today’s analytic environment the majority of time is spent on “process” rather then critically thinking about the intelligence question and its analytic solution”

• The Environment
 – Compute Power limited to user’s local workstation
 – Applications limited to specific data types and functions
 – Limited access to analytic experts
 – Limited sharing /collaboration

• The Process
 – Unnecessary retrievals, voluminous data pulls
 – Too much time spent on mechanics of data access rather than desired analysis
Vision for the Future

• Shift emphasis from retrieval to analysis
 – *Hide the complexities of data retrieval while facilitating the analytical process*

• Move to fully distributed, virtualized architecture, i.e., *clouds*
 – *Provide as much data access as possible, and as much processing power as necessary to answer the analytical query at hand*

• Document and share the analytic tradecraft
 – *Publish, share and reuse data products and tools among experts*

• Leverage NRO “CORE” -- *M. Rothman, SATL Lab*
 – Consolidated Operations Research Explorer
 – *A thin client visualization tool for all geo-referenced metadata*

• Integrate iCORE -- *"Intelligent CORE”*
 – *Add analytical capabilities to CORE using cloud-based processing engines for model-based analytics, i.e., workflows*
Basic CORE Architecture

- Google Earth-based tool for accessing and displaying data from dozens of databases
- Available data sources given on the indented “tree” menu
 - When user selects a check-box, GE retrieves that data from the remote data source using KML “network links” and displays it
- CORE is ~41k SLOC of KML, in addition to remote scripts for actual data access
A “CORE” Issue: *Information Overload!*

- Too easy to get overwhelmed with too much data
- Difficult to know what data is available in the “tree” menu
- CORE has no analytical capabilities
- Analysts need tools to help them “connect the dots”
- *Intelligent CORE: iCORE*
Basic iCORE Architecture

Client

Correlation Engine

Databases

- Google Earth augmented with
 - Domain Specific Language pane
 - Simple geospatial query language, e.g., "X near Y"
 - Word completion based on data available over KML links
 - Visual Programming pane
 - Analyst can "wire together" processing chains based on palette of available functions to access, process, and display data
 - Workflow -- model-based analytics -- run in dynamically hosted Correlation Engines
Domain Specific Language and Text Completion Area

- use `<database_name>`
- upload `<kml_file_name>`
- show `<foo>`
- show `<foo>` near `<bar>`
- show `<foo>` near `<bar>` refresh

Ingest Server

Looks for dynamic data and periodically refreshes it

MongoDB

Dynamic Data

Static Data

Geospatially indexed database

KML Results
An Example: Proximity Detection, i.e., “No-Fly Zone”

• Correlate live CONUS flight paths with No-Fly Zones
 • Nuclear power plants, military installations, etc.
• Thousands of flights at any one time
 • Current flight status available on-line
• Update periodically, e.g., every 60 seconds
 • Compare all flights against all No-Fly Zones to identify incursions
The iCORE Proximity Detection Demo

“show ‘nuke_sites’ near ‘ordflights’”
The iCORE Visual Programming Interface

- **Pypes**: python-based visual programming tool
- Palette of functions available to compose CE semantics
- Can be used as a user interface and workflow manager
An Example: Network Connections

- Identify connections in a network connection log DB to a given Region of Interest during a given Time Period
- Use Rule Engine to identify “Connection A” events followed by “Connection B” events within a given Δt
The iCORE Network Connection Demo

Cybersecurity Database

3562268 specific IP addr/latlon mappings in a hashing scheme for commercial, city-level geo-location

IP Addr/LatLon Catalog

mySQL DB with 9,410,769 outgoing network connections from Aerospace in one 24-hour period

Cloud-based Pypes Server

PyCLIPS Rule Engine

Python interface to mature CLIPS inference engine

Web Browser Client

Google Earth
The iCORE Framework as an *Incubator* to Explore Issues in End-User Capabilities *and* IT Infrastructure

- **Query Semantics**
 - *Spatial, temporal, event types, fusion queries*

- **Cloud Computing Resources**
 - *Correlation Engines are spun-up on-demand*

- **Autonomic Cloud Workflows**
 - *Automatic management of application and cloud performance*

- **Disadvantaged Users**
 - *User in the field on a mobile device with low bandwidth has on-demand access to massive data and processing power*

- **Distributed Data Management**
 - *Enforce data policy across sites*
 - *Analyst recommender systems*

- **Security and Virtual Organizations**
 - *Users can only see and operate on data they are permitted to see: role-based authorization*
Aerospace Eucalyptus Private Cloud

Eucalyptus: open source Amazon EC2/S3 API cloud originally from UCSB
Intel Nehalem boxes, 168 cores total
Head Node: 8 cores, 16GB
Worker Nodes: (1x) 16 cores, 33GB, (6x) 24 cores, 33GB
Ultimate Goal: iCORE Released to a Beta User Community Running “At Scale” on a Cloud

Client 1 ... Client n

Database Aggregator/Gateway

DB1 ... DBn

Cloud Site 1

Cloud Manager

CE CE CE CE

HyperV HyperV HyperV HyperV
Conclusions

• We have developed iCORE as a Framework and an Incubator for exploring analytical tools and computing infrastructure for geospatial intelligence
 – Geospatial query language, disadvantaged users, ...
 – Cloud computing, autonomic control, security & governance, …

• In close collaboration with the original CORE team

• Demonstrated at GEOINT 2010, New Orleans

• Potential exists for integration with other systems
 – DIB, DCGS-IC, DSS

• Much more in-depth information is available

• Contact us: lee@aero.org