The European Ground Systems – Common Core (EGS-CC) Initiative

Nestor Peccia, ESA/ESOC
GSAW 2012

© 2012 by European Space Agency.
Published by The Aerospace Corporation with permission.
• Within Europe, different systems used by different companies/agencies
 – Some of them common to operations and AIT, some specific
• Many of the existing systems have reached or are reaching their end of life:
 – Become excessively complex with time
 – Use old software technologies and hardware platforms
 – Difficult to modernise
• Compatibility/exchange of information:
 – Often multiple systems are used in AIT of a space system by different companies or at different levels (e.g. payload/system) or in different phases
 – Little synergy across missions and mission phases
EGS-CC Initiative Objectives

• The EGS-CC Initiative aims at developing a common infrastructure enabling
 – Seamless transition from spacecraft Assembly, Integration and Testing (AIT) to mission operations
 – Enable overall cost reductions by sharing development, sustaining and maintenance of a single infrastructure
 – Facilitate cost and risk reduction when implementing space projects
 – Enable the modernization of legacy EGSE and MCS systems
 – Enable the exchange of ancillary implementations across organizations
EGS-CC Stakeholders

- EGS-CC is a collaboration of European prime industry and space agencies to develop a common core
 - Astrium Satellites
 - Astrium Space Transportation
 - Thales Alenia (France and Italy)
 - OHB Systems
 - ESA (ESTEC and ESOC)
 - CNES
 - DLR
- Initiative considered strategic by all parties
- Memorandum of Understanding between the EGS-CC partners
 - Development of the EGS-CC in open competition according to ESA contract conditions and processes
 - Adoption of the EGS-CC for institutional missions and then for commercial missions as well
Main EGS-CC System Features

• Scope of the EGS-CC system features is very ambitious
 – Support of all mission types and phases
 – Open, component based, service oriented architecture
 – Generic and extensible functionality
 – Binary compatibility
 – Layered implementation
 – Clear separation between generic M&C functions (kernel) and specific features of the controlled system (adaptation layer)
 – Configurable level of operations abstraction
 – Standardised interfaces (as far as possible…)
 – Technology isolation (as far as possible…)
 – Long term maintainability
 – High Performance and Scalability
Main System Decomposition (1/2)

• EGS-CC will consist of:
 – Reference Architecture: system decomposition, internal and external interfaces
 – Kernel components: system backbone, mandatory use, non-replaceable, only extensible
 – Reference implementations: system periphery components, replaceable by user’s own implementation
 – Reference test facilities: external components used to validate the full system
Main System Decomposition (2/2)

- Controlled Systems
- External Systems
- External Interfaces
- User Applications
- Adaptation Layer
- Custom/Extension Components
- M&C Components
- Applications Support Layer

Legenda:
- Reference Test Facility
- Reference Implementation
- Kernel
Top Level Architecture

- External Systems (external applications and systems: planning, execution, test, and analysis, evaluation, dissemination)
- Basic Post-Processing
- Evaluation environment
- User Applications
- M&C Services
- M&C Components
- Extension Components
- Adapter Components
- Data I/F
- Application Support Components
- Component Framework
- Third Party Software

Legend:
- Reference
- Test Facility
- Reference
- Implementation
- Kernel
Kernel Functional Scope

• Application support layer
 – System management and administration
 – Access control (security)
 – Development and run-time framework
 – Time synchronisation
 – Data archiving (raw and engineering)

• Monitoring and Control kernel
 – Space System Model
 – Control activities validation, execution and verification
 – Commanding
 – Procedures execution
 – Reporting data processing
 – Event processing
 – Live, playback, retrieval and replay processing
 – M&C services provision
Reference Implementation Functional Scope

- **Adaptation layer**
 - Commanding adapter
 - Reporting and event data reception and decoding/extraction
 - PUS services modelling
 - Time correlation
 - TM/TC I/F handler

- **User applications**
 - User desktop
 - User defined displays (plots, synoptic, alphanumeric)
 - M&C applications (control stacks, history logs, alarm summary display)
 - System displays
 - M&C Model browser (navigation tree)

- **Preparation tools**
 - Data model definition tool
 - System manager

- **External interfaces**
 - Tailoring data import
 - Archiving data export
Technology Selection

• Technologies are currently being considered

• Operating System
 – Linux is the selected Operating System for all implementations
 – Compatibility with Windows is required for the user interface and preparation environment
 – Operating system independence should be achieved where possible

• Programming Languages
 – Java is the preferred language for all EGS-CC components
 – Does not rule out the integration into EGS-CC of software implemented in other languages
Run-time Environment Technology Candidates (1/2)

<table>
<thead>
<tr>
<th>Technology Domain</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Framework</td>
<td>OSGi, Spring, EJB3, CCM, SCA</td>
</tr>
<tr>
<td>Service Integration Platform</td>
<td>ESBs (OpenESB, ServiceMix, Mule, JBoss), CCSDS MAL+COM</td>
</tr>
<tr>
<td>Communication and Data Distribution</td>
<td>JMS (ActiveMQ, Joran), AMQO, OMG Notification Service, OMG Data Distribution Service</td>
</tr>
<tr>
<td>System Run-Time Management</td>
<td>JMX</td>
</tr>
<tr>
<td>Logging and Tracing</td>
<td>Log4j, OSGi Log Service, OMG Logging Service</td>
</tr>
<tr>
<td>File Management</td>
<td>Revision Control: SVN, GIT, Content Repository API for Java (JCR)</td>
</tr>
<tr>
<td>Security</td>
<td>JAAS, LDAP</td>
</tr>
</tbody>
</table>
Run-time Environment Technology Candidates (2/2)

<table>
<thead>
<tr>
<th>Technology Domain</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Persistence</td>
<td>Service Data Objects, Java Data Objects, Java Persistence Api, Java Database Connectivity, Hibernate</td>
</tr>
<tr>
<td>Data Archiving</td>
<td>RDBS, HDF5, noSQL (Cassandra),</td>
</tr>
<tr>
<td>Data Modelling and Editing</td>
<td>UML, Eclipse EMF</td>
</tr>
<tr>
<td>Post Processing and Reporting</td>
<td>Eclipse BIRT, JasperReports</td>
</tr>
<tr>
<td>Scripting and Automation Languages</td>
<td>Javascript, Python, Groovy, PLUTO, ..</td>
</tr>
<tr>
<td>User Interface</td>
<td>Thick Clients (Eclipse RCP, Swing, QT), Thin Clients (Ajax, RAP,…), Flex</td>
</tr>
<tr>
<td>User Defined Displays</td>
<td>SVG, X3D, ..</td>
</tr>
<tr>
<td>Tool Category</td>
<td>Candidates</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Software Configuration Management</td>
<td>Subversion, Git, Perforce</td>
</tr>
<tr>
<td>Requirements Management</td>
<td>DOORS</td>
</tr>
<tr>
<td>UML Modelling</td>
<td>Enterprise Architect, Magic Draw</td>
</tr>
<tr>
<td>Integrated Development Environment (IDE)</td>
<td>Eclipse, Netbeans, IntelliJ IDEA</td>
</tr>
<tr>
<td>Repository Browser</td>
<td>Atlassian FishEye, ViewVC, WebSVN, gitweb</td>
</tr>
<tr>
<td>Build System</td>
<td>Maven, Ant</td>
</tr>
<tr>
<td>Compiler / Debugger / Profiler</td>
<td>Javac (OpenJDK, Oracle) / IDE / VisualVM, JProfiler, Eclipse Memory Analyzer</td>
</tr>
<tr>
<td>Acceptance and Integration Test Management</td>
<td>TestNG, Jubula</td>
</tr>
<tr>
<td>Unit Test Framework</td>
<td>TestNG, JUnit</td>
</tr>
</tbody>
</table>
SDE Technology Candidates (2/2)

<table>
<thead>
<tr>
<th>Tool Category</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue Tracking</td>
<td>Atlassian JIRA</td>
</tr>
<tr>
<td>Source Code Analysis and Metrics</td>
<td>Checkstyle, Cobertura, FindBugs, PMD, Sonar</td>
</tr>
<tr>
<td>Continuous Integration</td>
<td>Jenkins</td>
</tr>
<tr>
<td>Wiki</td>
<td>Atlassian Confluence</td>
</tr>
<tr>
<td>Project Management</td>
<td>Atlassian Confluence</td>
</tr>
<tr>
<td>Artifact Manager / Repository</td>
<td>Nexus</td>
</tr>
<tr>
<td>Source Code Documentation</td>
<td>Javadoc</td>
</tr>
<tr>
<td>Online Code Reviews</td>
<td>Atlassian Crucible</td>
</tr>
<tr>
<td>Mailing Lists</td>
<td>Mailman, Majordomo</td>
</tr>
<tr>
<td>User Management</td>
<td>Atlassian Crowd</td>
</tr>
<tr>
<td>Documentation / Manuals</td>
<td>Wiki, Docbook XML, Microsoft Office, OpenOffice</td>
</tr>
<tr>
<td>Installation and Deployment</td>
<td>RPM</td>
</tr>
<tr>
<td>Project Web Site</td>
<td>Atlassian Confluence</td>
</tr>
</tbody>
</table>
EGS-CC Project Phases

• Phase A (User Requirements & System Concept) currently in progress
• Phase B (Software Requirements Engineering and Architectural Design) intended to be carried out by industrial consortium (including MCS and EGSE developers) under monitoring of SB and SET
• Phase C/D (Detailed Design and Coding) will include the end-to-end validation based on the development of a full EGSE/MCS system using EGS-CC
• Phase E will cover maintenance and evolution
• Ideally an end-to-end program (covering also support to deployment/exploitation) is going to be established following successful completion of Phase B
Potential Risks

• Difficulty to reach technical consensus
• System over-complexity
• Funding and organisation for later phases
• Synchronisation with stakeholder’s own roadmaps
 – Parallel development of systems that will use/interface with EGS-CC
 – Critical schedule
• Risk to lose momentum and commitment
Conclusions

• The EGS-CC initiative is in its early phases
• First time such a level of agreement is reached among so many parties
• Strong stakeholders commitment
• Phase A aiming at defining the programmatic and technical approach
• Objectives are very ambitious but feasible
• The expected benefits justify the commitment and associated investments