

GSAW Workshop Flight Software Effects on the Ground

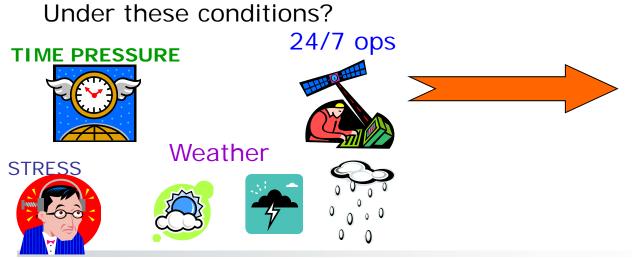
Dr. Suzanne M. Dawes, Senior Project Leader, Human Systems Integration (310) – 336-5643 suzanne.m.dawes@aero.org

Systems Engineering Division 29 February 2012

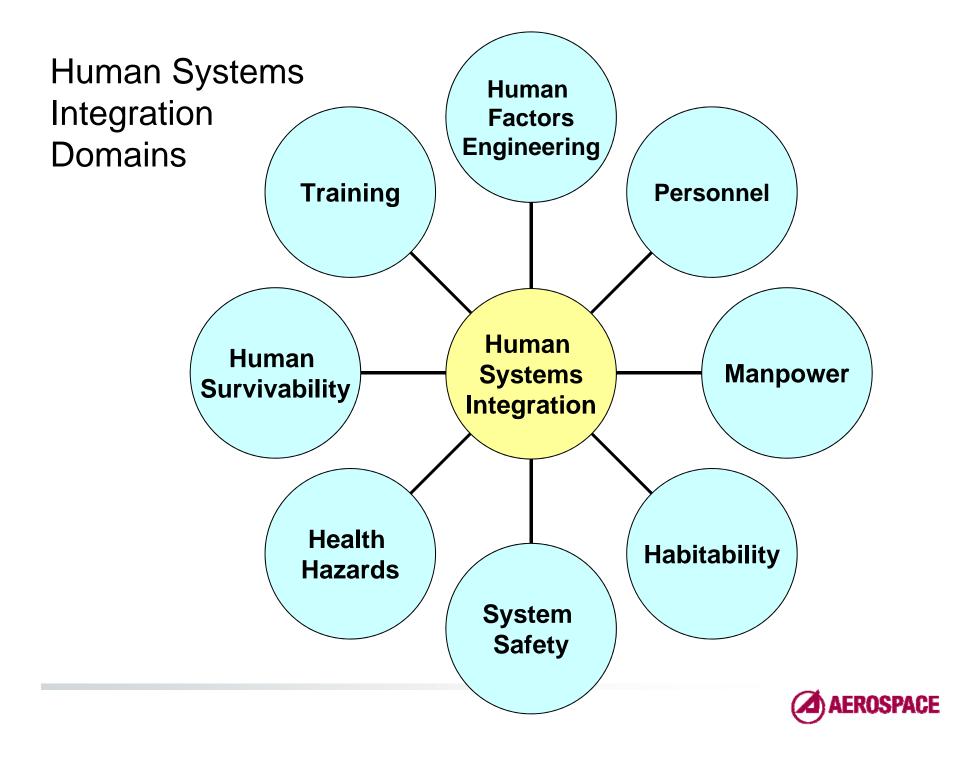
© The Aerospace Corporation 2012

What are we trying to accomplish?

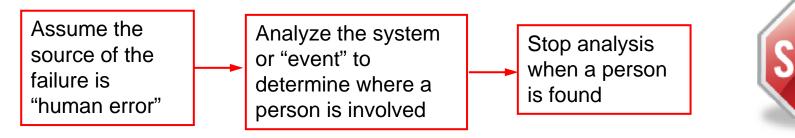
Can these warfighters?


With this training?

Using this equipment?


Accomplish their mission?

Images courtesy of United States Air Force


How pervasive is human error?

- Human error is the primary cause of 60 to 90 percent of major accidents and incidents in complex systems...
 - Many errors people commit in operating systems are the result of poor system design or poor organization structure
 - Usually the error was only one of a lengthy and complex chain of breakdowns
 - A lot of effort goes into producing procedures but it seems a lot of effort goes into ignoring them
- An accident is an "error with sad consequences"
 - Human performance "guts of every accident"
 - Human Error is a causal factor in 60-80% of aviation accidents
 - Human Factors deficiencies significantly contributed to Bhopal, Chernobyl and Three Mile Island accidents

Historical View of Human Error

- Oftentimes when dealing with human error, we are tempted to ask –
 - Why didn't they pay more attention?
 - How could they not have noticed?
 - Why didn't they know how to do xx?
- The proposed solution is to
 - telling people to be more careful,
 - by punishing those that made the mistake,
 - or by adding new rules or procedures
- This is sometimes considered the "Bad Apple Theory" (Dekker, 2006)
 - if it just wasn't for that person, the system would work just fine.
- Perrow (1984) calls this "blaming the victim"

Recent views of human error

- Looks at human error from a systems perspective including the human, organization and technology
- Examines the balance between safety and other goals (including production)
- Move from blame the victim to preclude-detect-mitigate
- Shift from error as a cause to error as a consequence

Procedures

- In many design situations procedures are considered the last line of defense between successful or unsuccessful completion of a task.
- Key attributes of procedures include, quality, relevance, accuracy, availability, usability
- A lot of effort goes into producing procedures but it seems a lot of effort goes into ignoring them
 - A common theme in accidents and incidents in which casual factors are identified
- Example: American 191 (DC-10 in 1979)
 - Incorrect maintenance procedures
 - Pylon and engine removed and refitted as one assembly
 - Failed during take-off a few weeks later
 - All 273 on board were killed
 - Latent failures such as design and certification also causal factors

Are the procedures even used?

- In a survey of procedure usage in a large petrochemical plant, the following was found
 - 80% of the safety-critical and quality-critical jobs were associated with procedure usage
 - Only 58% had the procedures open and in front of them while they were actually completing their jobs
- Some of the reasons for not using the procedures include:
 - If followed to the letter, the job wouldn't get done
 - People are not aware that the procedure exists
 - People prefer to rely on their own skills and experience
 - People assume that they know what is in the procedure (Reason, 2008, p.59)
- Execution of written procedures depends primarily on two factors
 - The accuracy of the information contained in the procedure
 - The usability of the procedure document.

What drives the decision to automation?

Integration of users across system lifecycle represents 40-60% of life-cycle costs

- * Increased demands on operators – new missions, CONOPS, tactics
- * Increased volume and rate of information
- * Reduced manpower projections - number and experience
- * Changing human roles control of multiple platforms, multi-mission tasking

Is Automation the Answer?

Automation and Human Operator Role

- The human operator's role in modern high-technology systems is, increasingly that of a systems monitor, systems manager and decision maker
- Automation is a double-edged sword, it has eliminated some sources of error but introduced new sources
 - In some cases these new errors result in consequences that are more severe than those eliminated by the automation (Weiner and Nagel, 1988)
 - In some cases, automation has created the situation where small errors are tuned out, but opportunities for large errors are created
 - As Weiner states, "some glass cockpits have clumsily used automation that creates bottlenecks where pilots are least able to deal with them – during high workload periods" (Weiner 1988, Hughes and Dornheim, 1995, p. 52)

Automation

Advantages:

- Eliminates human error and limitations
- Capitalize capabilities of human operator and machine

Disadvantages:

- Computer cannot make judgments
- Computer systems not always reliable to issue alert
- Alerts may be misinterpreted
- De-skill the operator
- Isolates operator from control process
- May lead to degraded failure-recovery

Automation in Complex Technological Systems

- Paradoxically automation can often increase the impact of human error
 - automation merely shifts the location of human error from the 'operator' to the designer, the maintenance personnel, and the supervisor who must deal with automation problems and failures. (Reason, 1990)
- Automation can help complex technological cope with human error, but it alone will not prevent human error occurrences
- Providing insight into the human error consequences resulting from a particular system design enables designers to choose between alternative designs that includes levels of automation

The goal is a system design that reduces the frequency of human errors, reduces the severity of the consequences of human error, and enables recovery from human errors (error-tolerant systems)

Sanders, Mark S. and McCormick, Ernest J. (1993): Human Factors in Engineering and Design (7th Edition). New York, McGraw-Hill
Chapanis, A., (1985). Some reflections on progress. Proceedings of the Human Factors Society 29th Annual Meeting, Santa Monica, CA: Human Factors Society, pp. 1-8
Reason, James (1990). Human Error. Cambridge University Press.
www.af.mil

- ANSI/HFS 100 (2007). American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (2007)
- A Manager's Guide to Reducing Human Errors: Improving Human Performances in the Chemical Industry, CMA, 1990
- Braddock, R. (1958). An extension of the "Lasswell Formula". Journal of Communication, 8, 88-93.
- Casey, Steven. (2006). *The Perilous Plunge*. In The Atomic Chef and Other True Tales of Design, Technology, and Human Error. Aegean Publishing, Santa Barbara, CA. pp. 224-235.
- Chapanis, A., and LIndenbaum, L.E., (1959). A reaction –time study of four control-display linkages. *Human Factors*, Volume 1, No. 4 1-7.
- Chaparro, A., Croff, L.S. (2001). *Human factors survey of aviation technical manuals phase 1*. Washington, DC: U.S. Department of Transportation.
- Chaparro, A., Croff, L.S. (2001). *Human factors survey of aviation technical manuals phase 2*. Washington, DC: U.S. Department of Transportation.
- Cheaney, E.S., and Billings, C.E., (1981). Application of the epidemiological model in studying human error in aviation. NASA Ames Research Center. Moffett Field, CA
- Cooper, S.E., Ramey-Smith, A.M., Wreathall, J., Parry, G.W., Bley, D.C., Luckas, W.J., Taylor, J.H., and Barriere, M.T. (1996). A technique for Human Error Analysis (ATHEANA) – technical basis and method description. NUREG/CR-6350, United States Nuclear Regulatory Commission, Washington, D.C.
- Cushing, S. (1995) Pilot-Air Traffic Communication- It's not (only) what you say, it's how you say it. *Flight Deck*, Winter 1995/6.
- Dekker, Sidney (2005). *Ten questions about human error: a new view of human factors and system safety*. New York. Routledge.

- Dupont, V., Bestgen, Y. (2006). Learning from technical documents: The role of intermodal referring expressions. *Human Factors*. Vol. 48, no. 2, pp. 257-264
- Endsley, M. (1988). Situation awareness global assessment technique (SAGAT). Proceedings of the National Aerospace and Electronics Conference (NAECON), 789-795. New York: IEEE
- Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors. 37(1), 32-64.
- Endsley, M.R., Bolte, B., and Jones, D.G., (2003). Designing for Situation Awareness: An Approach to User-centered design. New York & London: Taylor and Francis
- Endsley, M.R., and Kaber, D.B., (1999). Level of Automation Effects on Performance, Situation Awareness and Workload in Dynamic Control Task. Ergonomics. 42, (3)., p. 462-492.
- Ernst Mach (1905), Erkenntnis und Irrtum (Knowledge and Error, English edition, 1976), Netherlands: Dordrecht, Reidel
- Fitts, P.M. (1954) The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381-391.
- Grayson, R.L. and Billings, C.E. (1981) Information Transfer Between Air Traffic Control and Aircraft: Communication Problems in Flight Operations, Information Transfer Problems in Aviation Systems. NASA Rep. TP-1875, NASA Ames Research Center. Moffett Field, CA.
- Helmreich, R.L. and Merritt, A.C. (1998) *Culture at Work in Aviation and Medicine*. Ashgate Publishing: Aldershot.
- Johnson, R.C., Thomas, D.L., Martin, D.J. (1977). User acceptance and usability of the C-141 job guide technical order system-Final Report. Brooks Air Force Base, TX: Air Force Human Resources Lab.
- Hollnagel, Woods and Leveson. (2006). Resilience Engineering: Concepts and Percepts.

- Meshkati, N. (1991). Human Factors in Large-Scale Technological Systems; Accidents: Three Mile Island, Bhopal, Chernobyl., Industrial Crisis Quarterly, 5, 133-154
- Meshkati, N. (1991). Integration of Workstation, Job and Team Structure design in complex humanmachine systems: A framework. International Journal of Industrial Ergonomics, 7, 111-120
- McCoy, W.E. and Funk, K.H. (1991). Taxonomy of ATC Operator errors based on a model of human information processing. In R.S. Jensen (Ed), Proceedings of the Sixth International Symposium on Aviation Psychology, 29 April to 2 May, Columbus, Ohio.
- Miller,G.A. (1956) The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.
- MIL-STD-1472F Department of Defense *Design Criteria Standard: Human Engineering*, Department of Defense, (2003)
- Norman, D. (1998, 2002) The Design of Everyday Things. New York. Basic Books.
- Perrow, C. (1984). Normal Accidents. Living with High-Risk Technologies. New York. Basic Books
- Rasmussen, Jens., Pejtersen, A. M., and Goodstein, L.P., (1994). *Cognitive Systems Engineering*, John Wiley & Sons, New York, New York.
- Rasmussen, Jens. (1983). *Skills, Rules and Knowledge; Signals, Signs and Symbols and other distinctions in human performance models.* IEEE Transactions on systems, man and cybernetics. Vol. SMC-13, No. 3, May/June 1983.
- Reason, James (1990). Human Error. Cambridge University Press.
- Reason, J., and Hobbs, A. (2003). Managing Maintenance Error. A Practical Guide. Burlington, VT: Ashgate.
- Reason, J, "Human error: models and management," BMJ 2000; 320:768-770

- Smith, Timothy P. (2005). *Human Factors Review of Restraint Failures on Mobile Amusements Rides*. Division of Human Factors, U.S. consumer Product Safety Commission. *http://www.cpsc.gov/LIBRARY/FOIA/FOIA05/os/amusrest.*
- Spurgin, A.J., Lydell, B.D., Hannaman, G.W. and Lukic, Y. (1987). *Human Reliability Assessment: A Systematic Approach*. In Reliability '87, NEC, Birmingham, England.
- Swain, A.D. (1982). Modelling of response to nuclear power plant transients for probabilistic risk assessment. Proceedings of the 8th Congress of the International Ergonomics Association, Tokyo, August, 1982.
- Swain, A.D. and Guttmann, H.E. (1983). A handbook of human reliability analysis with emphasis on nuclear power plant applications. NUREG/CR-1278, USNRC, Washington, DC 20555.
- Vesper, J.L. (2003). Writing Procedures That Contribute to Performance. Learning Plus Inc., Rochester, N.Y. Vincente, Kiln J. and Rasmussen, Jens. (1988). A Theoretical Framework for Ecological Interface Design. Riso Report M-2736, August 1988. ISBN 87-550-1459-3. Riso National Laboratory, DK-4000 Roskilde. Denmark.
- Vicente, Kim. (2006). The Human Factor. Revolutionizing the way people live with technology. New York & London, Routeledge.
- Welford, A.T. (1960) The measurement of sensory-motor performance: Survey and re-appraisal of twelve years progress. Ergonomics, 3, 189-230.
- Wickens, C. (1984). Engineering Psychology and Human Performance. Columbus, OH, USA: Charles E. Merrill.
- Wickens, C. (1992). Engineering Psychology and Human Performance (Second Edition). New York: Harper-Collins.

- Chaparro, A., Croff, L.S. (2001). *Human factors survey of aviation technical manuals phase 1*. Washington, DC: U.S. Department of Transportation.
- Chaparro, A., Croff, L.S. (2001). *Human factors survey of aviation technical manuals phase 2*. Washington, DC: U.S. Department of Transportation.
- Dupont, V., Bestgen, Y. (2006). Learning from technical documents: The role of intermodal referring expressions. *Human Factors*. Vol. 48, no. 2, pp. 257-264
- Johnson, R.C., Thomas, D.L., Martin, D.J. (1977). User acceptance and usability of the C-141 job guide technical order system-Final Report. Brooks Air Force Base, TX: Air Force Human Resources Lab.
- MIL-STD-1472F Department of Defense *Design Criteria Standard: Human Engineering*, Department of Defense, (2003)

Reason, James (1990). Human Error. Cambridge University Press.

- Vesper, J.L. (2003). Writing Procedures That Contribute to Performance. Learning Plus Inc., Rochester, N.Y. Vincente, Kiln J. and Rasmussen, Jens. (1988). A Theoretical Framework for Ecological Interface Design. Ris0 Report M-2736, August 1988. ISBN 87-550-1459-3. Riso National Laboratory, DK-4000 Roskilde. Denmark.
- Vicente, Kim. (2006). *The Human Factor. Revolutionizing the way people live with technology.* New York & London, Routeledge.
- Weidner, H.B. (2002). *Topics in Policy and Procedure Communication*. Society for Technical Communication 49th Annual Conference, Nashville, Tennessee
- Wiering, D.R., Farkas, D.K. (1991). *Procedure writing across domains: nuclear power plant procedures and computer documentation*. Proceedings of the 9th annual international conference on Systems documentation: Chicago, IL.
- Zimmerman, C.M., Campbell, J.J. (1988). *Fundamentals of Procedure Writing*. GP Publishing Inc., Columbia, M.D.

- Department of Defense (DoD). (1999). *Human Engineering*, MIL-STD-1472F, 23. August 1999.
- Endsley, M. (1988). Situation awareness global assessment technique (SAGAT). Proceedings of the National Aerospace and Electronics Conference (NAECON), 789-795. New York: IEEE
- Endsley, M. R. (1995). Toward a theory of situation awareness in dynamic systems. *Human Factors*. 37(1), 32-64.
- Endsley, M.R., Bolte, B., and Jones, D.G., (2003). *Designing for Situation Awareness: An Approach to User-centered design*. New York & London: Taylor and Francis
- Endsley, M.R., and Kaber, D.B., (1999). Level of Automation Effects on Performance, Situation Awareness and Workload in Dynamic Control Task. *Ergonomics*. 42, (3)., p. 462-492.
- Fitts, P. M., (Ed.). (1951). *Human Engineering for an effective air-navigation and trafficcontrol system*. Columbus Ohio: Ohio State University Research Foundation.
- Hughes, D., and Dornheim, M.A. (1995). Accidents Direct Focus on Cockpit Automation. *Aviation Week & Space Technology*. January 23, 1995, 52-54.
- Salvendy, G. (1997). *Handbook of Human Factors and Ergonomics*. New York. John Wiley & Sons, Inc.
- Sarter, N.B., and Schroeder, B. (2001). Supporting Decision Making and Action Selection under Time Pressure and Uncertainty: The Case of In-Flight Icing. *Human Factors.* Vol. 43, No. 4, 573-583 (2001)

- Sheridan, T. (2002). *Humans and automation: System design and research issues*. Santa Monica, CA, and New York: Human Factors and Ergonomics Society and Wiley
- Sheridan, T.B., and Verplank, W.L., (1978). *Human and computer control of undersea teleoperators*. (Man-Machine Systems Laboratory report). Cambridge: MIT
- Van Cott, H.P. and Kinkade, R.G. (1972). *Human Engineering Guide to Equipment Design.* Washington, D.C., American Institute for Research, McGraw-Hill
- Weiner, E.L., & Nagel, D.C., (Eds). (1988). *Human Factors in Aviation*. San Diego: Academic.
- Wickens, C.D. and Hollands. J. (1999). *Engineering Psychology and Human Performance*. New York: Pearson
- Wickens, C.D. (2008). *Function allocation and the degree of automation.* Presentation to the Rocky Mountain Chapter of the Human Factors and Ergonomics Society.
- Woodson, W.E., Tillman B., and Tillman P. (1992). *Human Factors Design Handbook.* New York. McGraw-Hill.