Managing the Impacts of Flight Software Changes on the Ground Software Element (The RBSP Experience)

Mark Reid
RBSP Flight Software Lead
Johns Hopkins University, Applied Physics Lab
Mark.Reid@jhuapl.edu
(443) 778-2667

© 2012 by JHU/APL. Published by The Aerospace Corporation with permission.
Agenda

- Introduction
- Proper Requirements Management
- Control of Interface Definitions
- Key Engineering Roles
- Architectural Decisions
- Conclusion / Questions
RBSP is a NASA mission to study near-Earth space radiation.

The mission consists of two nearly identical spacecraft.

Each spacecraft hosts 5 instrument suites, with a total of 10 unique science instruments.

This presentation will discuss 4 areas of system engineering that helped RBSP minimize the system wide impact of software changes.

- Requirements Management
- Interface Definitions
- Key Engineering Staff
- Architectural Decisions
Requirements Management
(Know Your System)

• **What is your system?**
 – How do your requirements fit with everyone elses?

• **How are your requirements documented?**
 – Requirements Flow Down
 – Traceability
 – Verification

• **How are changes to these requirements managed?**
 – Documented Change Requests
 – Change Control Board (CCB)
The RBSP System

• **Two Spacecraft**
 – 1 Mission Operations Center (MOC)
 – 2 Prime Strings of Workstations (RBSP-A and RBSP-B)
 – Plus Backup systems

• **Five Instrument Suites per Spacecraft**
 – 5 Science Operations Centers (SOC)s

• **Both Flight Software (FSW) and Ground Software (GSW)**
 Requirements and Test Cases are Documented in Telelogic DOORS.
 – Provides traceability of flow down and verification

• Requirements changes were tracked in Atlassian’s JIRA Tool
• Changes to baseline document are approved by a software CCB
• 56 FSW requirements issues addressed in 5 document revisions
Interface Definitions
(Know Your Interfaces)

• What other systems are coupled to (or impact) your system?
 – How can a change in someone else’s requirements impact you?
 – How can a change in your requirements impact someone else?

• How are these interfaces documented?

• You need to be able to see the forest as well as the trees
 – Identify areas of coupling between systems
 – Document these areas of coupling as clearly as possible with words, diagrams and tables

• How are interface changes managed?
• Documented in a Ground Software (GSW) to Flight Software (FSW) Interface Control Document (ICD)

• Documents RBSP’s use of:
 – CCSDS Uplink Command Formats
 – CCSDS Downlink Telemetry Formats
 – CCSDS File Delivery Protocol (CFDP) for playback of recorded data
 – Onboard Memory Management (Including objects)
 – Events and Command Status Formats
 – Instrument Time-tagged Command Buffers

• Changes are tracked in JIRA and approved by CCB
• 45 ICD issues addressed in 6 document revisions
Key Engineering Staff
(Know Your Roles)

• Who is Responsible for the Various Aspects of the Software, and at What Level?

• Who Owns the Data Formats?

• Who Defines the Interface Protocols?

• How are These Roles Documented?
Key Roles on RBSP

- Documented in the Software Development and Management Plan (SDMP)

- Mission Software Systems Engineer
 - Responsible for coordinating, planning, and directing the development and test of the RBSP software.

- Data Systems Engineer
 - Supports the Systems Engineering team to develop and manage the end to end data flow.

- Flight Software Lead Engineer
 - Leads FSW team and is responsible for spacecraft software elements

- Ground Software Lead Engineer
 - Leads GSW team and is responsible for ground software elements
Example Org Chart
Architectural Decisions
(Know Your Design)

• Minimize Coupling
 – Whenever possible work to keep the elements of the system as loosely coupled as possible.
 – Minimize the amount and scope of information one system element needs to know about another.

• Create Cohesive System Elements
 – Each system element should be as cohesive as possible, performing just its defined task.

• DON’T
 – Cross protocol boundaries
 – Over specify to the point of tying developer’s hands
RBSP’s System Architecture

- “Bent Pipe” system for “Decoupled” operations
- Instrument teams work directly with their instrument
- The spacecraft and ground system are transparent or invisible wherever possible
- Instrument commands are not contained within the spacecraft database in the MOC, but are instead maintained at each individual instrument team’s SOC
- Critical instrument telemetry can be alarmed in MOC
Conclusion / Questions

• In order to effectively manage the impacts of changes to the flight requirements or interfaces, everyone needs to:
 – Know Their System
 – Know Their Interfaces
 – Know Their Roles
 – Know Their Design

• Questions?