A Reusable Ground System Architecture Provides Lessons in the Use of DoDAF and UPDM

© 2014 by Harris Corporation. Published by The Aerospace Corporation with permission

Eric A. Barnhart
Systems Engineer

Howard D. Gans
Systems Engineer
Background

• Affordable Ground Architecture (AGA)
 – A Harris initiative to develop reusable ground systems architectures applicable to multiple problem domains
 – Identifies problem-unique and common aspects for each domain
 – DoDAF 2.0
 – Unified Profile for DoDAF / MoDAF (UPDM) in Rational Rhapsody

• Based on experience in multiple ground systems
 – NOAA Geostationary Operational Environmental Satellite - R Series (GOES-R)
 – NASA Space Network Ground Segment Sustainment (SGSS)
 – U.S. Army's Modernization of Enterprise Terminals (MET)
 – 40 years operational experience at USAF/AFWA

• AGA Goals
 – reduce cost and execution risk through reuse
Timeline of the Harris Initiatives

Ground System Reference Framework; 2008
- Single Architecture;
- Reuse of documents and concepts;
- Printed Materials (Visio / Powerpoint);
- GSMAW presentation

Affordable Ground Architecture; 2012-2013
- Migration to a Unified; Architecture in Rhapsody;
- Transition to Enterprise Arch;
 - DoDAF UPDM;
- Parameterized Costing Research
 - Reusable Partitions
 - EA to Model Based System Engineering Processes;
 - 1st Mission Specific Models Instantiated from Architecture
 - Experimental Component Library

Continuing Efforts; Ground System Knowledge-base; 2014+
- Parameterized Cost;
- Performance Options;
- Reusable Component Library
- Governance

Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM
AGA Overview

Capability Views

Data Views

System Views

Operational Views

DOORS

AGA Model

The AGA enterprise ground system model includes multiple DoDAF views
Issues in Architecture Reusability

<table>
<thead>
<tr>
<th>Reusable</th>
<th>Multiple Enterprises</th>
<th>Multiple Decisions</th>
</tr>
</thead>
</table>
| • Partitioning
• Naming conventions
• MBSE Transition Strategies | • Addresses Common & Unique Capabilities
• Multiple arch. parts
• Inheritance and classification | • Capability Selection
• Component Libraries
• Parameterization
✓ Cost
✓ Performance |

<table>
<thead>
<tr>
<th>Non-reusable</th>
<th>Single Enterprise</th>
<th>Single Decision</th>
</tr>
</thead>
</table>
| • Simplified partitions
• No transitioning strategy needed | • Simplified Capability Model | • No parameterization needed
• No libraries needed |

Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM

Reusability across multiple domains and decisions increases complexity

3/5/2014
Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM

Architecting For Reusability

• First, model the ground system in terms of the DoDAF Metamodel (DM2)
 – Start with missions and capabilities (CV)
 – Defer the other views (OVs, SVs)
 – The other views fall out naturally after the meta model data are defined

• Define entities in a data view
 – Reusable entities need defined types
 – Use no implicit entities
 – DIV is equivalent to a Block Definition Diagram (BDD) in SysML

• Partition the architecture for reuse
• Use generic terminology to describe the EA entities

Experience suggests a modified approach to EA for reusability
Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM

Leveraging the DM2 is key to the approach

DoDAF MetaModel (DM2) Simplified

Everything has Measures

*relationship is inverted from the DM2
Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM
Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM

Reusable capabilities impact multiple systems engineering models

- Capabilities tie together other models
- In general…
 - 80% of capabilities can be reused
 - 20% are unique to the mission
- Capabilities are added to the model under a governance process
Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM

Hierarchical capabilities are useful for less complex, non-reusable architectures.
Partitions Facilitate Modular Reuse

- Reuse is enhanced by an architecture partitioned into meaningful cohesive packages of capabilities

Architectural descriptions are imported into SysML models for reuse
Lower Level Partitioning

- UPDM provides a schema for grouping capabilities into temporal and/or structural parts within the architectural descriptions.
Enhanced Capability Taxonomy

Architectural descriptions facilitate reuse by grouping capabilities and their subtypes

Reusable Ground System Architecture Provides Lessons In the Use of DoDAF and UPDM
Reusable Ground System Architecture Provides Lessons In the Use of DoD Af and UPDM

Transition to MBSE / SysML

- Architectural Descriptions in UPDM are packages in SysML
- Transition to MBSE as follows
 - Import and reference these packages in a separate SysML project (readonly)
 - Do NOT load the UPDM profile!
 - Lacking the UPDM definitions, architectural entities now take on their equivalent SysML characteristics
 - Create mission specific SysML entities
 - Inherit the characteristics of the architectural entities
 - Inheritance does not require modify access
 - Customize the SysML model for the specific ground station mission

Architecture models transition easily to MBSE / SysML development
Generic Naming Conventions

- At the enterprise level, keep your taxonomy generic for reuse
 - Any facility where a weather product ground system is controlled can be called a “weatherCommandCenter” operational node
 - An orbiting sensor and satellite bus can be called an “orbitingObservatory” operational node
- At the system solution level, create specific instances
 - NOAA_WCDAS_Facility is a type of weatherCommandCenter
 - GOES-R_East is a type of orbitingObservatory
- For transitioning to SysML...
 - In order to map SysML system elements to EA elements, the EA elements must have a defined type
 - Implicit entities created directly on an SV-1 cannot be reused or mapped to SysML entities
 - First add them to a data view (DIV) as a defined entity

Generic enterprise taxonomies allow adaptation for unique missions
SysML behavioral models have corresponding EA entities

Underlying UPDM to SysML relationships enable this reuse process
Reusable Ground System Architecture Provides Lessons In the Use of DoD Architecture Framework (DoDAF) and UPDM

- SysML blocks inherit from the corresponding UPDM system.
- Parts are typed as the corresponding UPDM entities.
- Structural models also have corresponding EA entities.

Inheritance Of Architecture Characteristics

EA Model From UPDM

Desired SysML Model

FutureWeatherSys_ProductGeneration

- FW_DataRecovery:sysL1DataGeneration
- FW_ProdGen:sysL2PlusProductGeneration
- FW_ProdEval:sysProductEvaluation

SysML blocks inherit from the corresponding UPDM system

Parts are typed as the corresponding UPDM entities

Structural models also have corresponding EA entities
Summary

• Benefits
 – Enterprise Architecture can transition to Model Based Systems Engineering while maintaining traceability
 • Inherit the 80% common capabilities / systems
 • SysML can be used to engineer the 20% unique capabilities
 – SysML model is unique to the specific mission
 • Naming conventions and concepts are in mission terms
 • EA model is unmodified
 • EA model can be overridden where necessary

• Challenges
 – Manual process to make the links and unique configurations
 – Tools don’t yet directly support this concept with built-in functions
 • Need to follow SysML relationships to identify inherited information
 • Opportunity for some scripting
Conclusions

• Modeling a Ground System Architecture for reuse has unique difficulties
• Implementing a ground system solution from a reusable architecture using SysML requires extensive knowledge of both UPDM and SysML
• Up front investment is not trivial
• The effort is worth the benefits
 – Consistent knowledge-base of ground system architectures
 – Reusability at several levels
 • Architectural components
 • System products
 – Rapid decision making capability
 – Lower Costs in up front processes
• Future benefits
 – Parametrically defined cost and performance
 – Reusable process artifacts
 – Reusable components