Head in the Clouds
Tips, Tricks, and Lessons Learned from Building Ground Systems in the Cloud
Jon Erdman, Sean Kelley
02/25/2014
Who we are

- Jon Erdman - Chief Architect/Intelligence & Information Systems - Solers, Inc.
- Sean Kelley – Chief Architect/Intelligence Systems - Solers, Inc.

Ground System Experience:
- SOA-based ground systems for NOAA focused on shared services and infrastructure
- Ground systems for the Intelligence Community (IC) focused on large-scale distributed processing
- Commercial ground systems to support advanced image processing and value-added products

Cloud Experience:
- Created a secure, multi-tenant private cloud implementation for the IC
 - Accredited under ICD 503
 - Supported integration of new and legacy programs into the cloud
- Multiple prototypes of distributed processing applications in AWS
What is the “cloud”?

• “Cloud” in this presentation refers to an Infrastructure as a Service (IaaS) cloud unless otherwise specified

• What does an IaaS cloud offer?
 • Virtualized infrastructure providing processing, networking, and storage
 • Services for monitoring and dynamic scaling of application services
 • Infrastructure-level security support
 • Secure virtualization, Private VLAN, Isolated storage, Firewall, etc.

• Two Broad Categories
 • Stateful (i.e. “Virtual Datacenter”)
 • Typically long-running persistent instances
 • Stateless (i.e. “Dynamic Processing Cloud”)
 • Expects a combination of long-running and short-lived instances
What is a “Tenant”?

• “Tenant” refers to an entity running within the cloud infrastructure, potentially consisting of many individual applications and services

• What does a Tenant bring?
 • The applications!
 • Generally in the form of virtual machine images
 • Resource Requirements
 • Compute, network, storage
 • Part of the Tenant Agreement (aka Service Level Agreement)
 • Infrastructure Security Accreditation
Lesson 5
Choose Appropriate Deployment Model
When to use the cloud

- **Satellite ground systems have many software components**
 - Tasking and requirements management
 - Command and Control (C2)
 - Data processing
 - Advanced data exploitation and analytics
 - Product dissemination

- **Each has its own unique requirements that may make it more or less suitable for a cloud environment**

- **Cloud does not have to be all-or-nothing!**
 - A proper design should be able to support portions of the system both within and outside a cloud

Tip: Have a good understanding of your system components and requirements before making any infrastructure decisions
Cloud Benefits and Limitations

Clouds are best at:

- Large-scale distributed data processing
- “Burst” processing
- Hosting web-based services and interfaces
- Making data available to a large community
- Simplifying backup and update procedures

Clouds may struggle with:

- “Hard” real-time processing
- Fulfilling custom hardware requirements
- Moving very large amounts of data efficiently
- Standalone thick-client user interfaces
Lessons Learned Countdown

Lesson 5
Choose Appropriate Deployment Model

Lesson 4
Understand your cloud’s security model
Security is key

- Leverage IaaS provider’s accreditation
- Take advantage of IaaS provider’s security features
 - Virtual Private Network/Virtual Private Cloud support
 - Network Address Translation, Access Control Lists, Distributed Firewalls
 - Secure tenant storage
 - Intrusion detection, monitoring, audit archiving and filtering
- Automate configuration management
 - Use tools such as Red Hat Satellite, Puppet, or Chef to enforce configuration of tenant virtual machines
- Know the risks
 - IaaS administrators could gain access to internal application data
 - IaaS providers are a tempting target for attack
 - Present a larger target and successful penetration could mean compromises across numerous programs

Tip: There are many misconceptions about cloud security – make sure that your customer is informed and knowledgeable
Lessons Learned Countdown

Lesson 5 - Choose Appropriate Deployment Model
Lesson 4 - Understand your cloud’s security model
Lesson 3 - Architect for the cloud
Creating new Cloud Applications

- New applications targeted for a cloud environment should be designed for the cloud from the start
 - Efficient execution and communication between distributed processes requires a distributed management framework
 - Hadoop, Storm, Mesos, Hystrix, Zookeeper, etc.
 - How can distributed processing be monitored effectively?
 - Are my processes starting and stopping correctly?
 - Are there processing limits enforced by the cloud?
 - What is the COTS licensing structures for dynamic processing?
 - Example: MATLAB compiler/runtime vs parallel toolkit

Tip: Cloud technology is evolving rapidly. Try to avoid vendor lock-in, use standards, and stay aware of emerging trends
Migrating legacy applications to a cloud requires careful consideration

- What is the cost to rebuild your legacy application?
 - Specific installation and configuration settings are often undocumented
 - Databases may need to be deployed differently for a virtualized environment
- Can the Cloud Hypervisor support the legacy hardware requirements?
 - Limits may exist for maximum number of cores, storage, and/or memory on a single instance
- Are my current COTS/GOTS/OSS solutions compatible with the cloud environment?
- Stateful clouds will often be a faster & easier migration path
Whatever can go wrong ...

- There are many cloud-specific issues that may arise during the normal course of operations
 - Cloud failures during dynamic provisioning attempts
 - Process preemption by someone else’s higher priority process
 - Network bottlenecks from other misbehaved tenants
 - Network latency between geographically distributed cloud sites
- Extensive testing is required to ensure that the applications can handle failures

Tip: Design & Test for failure!
Lessons Learned Countdown

Lesson 5
Choose Appropriate Deployment Model

Lesson 4
Understand your cloud’s security model

Lesson 3
Architect for the cloud

Lesson 2
Prototype early and often
• Prototypes will help ensure that the cloud performance meets your requirements
 • Are advertised network and data transfer rates consistently reproducible?
 • How long does provisioning new instances take?
 • Do all of my COTS/GOTS/Open Source software packages function correctly?

• Try different system configurations to improve performance
 • Will using a larger instance help?
 • Do different operating systems have different performance?
 • Can we be smarter about how we store and process our data to prevent excessive transfers?
 • Frameworks including Gluster/OrangeFS or Hadoop/HDFS may help

Tip: Get to know your cloud provider – they can often help if you aren’t seeing the performance that you expect
Lessons Learned Countdown

<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>Manage Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2</td>
<td>Prototype early and often</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>Architect for the cloud</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>Understand your cloud’s security model</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>Choose Appropriate Deployment Model</td>
</tr>
</tbody>
</table>
Your program, or at least some portion of your program, could probably benefit from the cloud

However, being forced to blindly “migrate to the cloud” may not be appropriate for all legacy programs

The longer a program goes without incorporating cloud into the design, the fewer the benefits and less chance of success

Include cloud requirements from the beginning and scope the work appropriately (including prototypes!)

Define your measures of success

What are the goals of using a cloud and how can those goals be met?

Clearly define your roles and responsibilities

Infrastructure provider vs application provider

May not initially result in cost savings, especially in legacy systems

Software may require significant changes to account for cloud limitations

COTS/GOTS/OSS components may need to be replaced

Additional expertise may be necessary if the current team is not cloud-savvy

Tip: Open and honest communication between all stakeholders is critical to success
Questions?

• **Contact Info:**

 Jon Erdman
 jon.erdman@solers.com

 Sean Kelley
 sean.kelley@solers.com