Opening Remarks
Space and Missile Systems Center

MONA: Framework for Leading Change

GSAW 2014

26 February 2014

Dr Roberta Ewart
SMC Chief Scientist
GSAW—Key Ingredient for Success

- Industry-wide ground architecture concepts
- Close to emerging space design innovations
- Experienced general space brain trust
- We are presenting:
 - Top Concepts
 - Vision, Urgency, Strategy
 - Broad based tasks and incremental steps, such as SNAP
- Initiating Productive Momentum
Leading Change

• Establish a Sense of Urgency
• Developing a Vision and Strategy
• Create the Guiding Coalition
• Communicating the Change Vision
• Empowering Broad Based Action
• Generating Short Term Wins
• Consolidating Gains and Producing more Change
• Anchoring New Approaches in the Culture
Establish Sense of Urgency

<table>
<thead>
<tr>
<th>USAF Chief Scientist</th>
<th>Policy and Law</th>
<th>GAO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development is drawn out, creates expensive programs</td>
<td>DoDI 5000.02: “Operation of the Defense Acquisition System”</td>
<td>GAO Report: Assessments of Selected Weapons Programs, Mar 2007*</td>
</tr>
<tr>
<td>Tightly integrated, one-of a kind systems further expensive to upgrade</td>
<td>DoDD 8320.02: “Data Sharing in a Net-Centric DoD”</td>
<td>GAO Testimony Before US Senate Subcommittee: Space Acquisitions, March 2008 (SBIRS)*</td>
</tr>
<tr>
<td>Poor ability to integrate different platforms and systems developed over time</td>
<td>CJCSI 6212.01F: “Net Ready KPPs”</td>
<td>GAO Report: 09-326SP Defense Acquisitions Assessments of Selected Weapons Programs</td>
</tr>
<tr>
<td>Low Technical Agility/Resilience</td>
<td>WSARA 2009</td>
<td>GAO Report 10-477T DoD Persistent Challenges Remain in Developing Space Systems</td>
</tr>
</tbody>
</table>

“The acquisition community has failed at delivering projects that meet cost, schedule and performance baselines:”
Major Systems Acquisitions must change.
Developing a Vision and Strategy

- MONA Vision: M->O->N Progression
 - Leverage Existing Investments in physical/electro mechanical Modularity
 - Grow Openness through carefully chosen interfaces and subsequent standards
 - Transition natl investments in Networked/IT systems for more rapid modernization
- “Step-In/Step Out” Strategy
 - Adopt and Tailor rather than re-invent
 - Join the consensus building and where appropriate nudge the process
 - Get onto the leading edge with DoD Architectural Concepts and Needs
 - Coordinate and Consult with Industry
 - Monitor Market Progress including civil, commercial and international
 - Then government “step out” and let industry “run with it”. Industry shall:
 - Develop and Maintain the Standards
 - Develop and Provide the Enabling Components
 - Develop and Provide the service to confirm MONA components adhere to stds

Examples: Funding railroads, highways, telephone infrastructure, electrification, internet.
Create the Guiding Coalition

• Government Investments brought down the bulk of the NRE:
 – AFRL SPA/MONARCH (2004… ~$130M) (DNA)
 – ORSO’s MSV (2006…~$50M)
 – DARPA F6 (2007… ~$70M)
• Natl Security Space coordination and collaboration through SUMO
 – Leveraging ~$2M in business case/ROI, architecting, standards
 • Business cases close with margin
• Industry working/steering groups
 – In formulation stage
• Professional societies for standards development and training
 – Working with AIAA and NASA CII approaches/strategy

Pulling together a group with enough power to lead change and getting them to work as a team
Communicating the Change Vision

• Workshops/Conferences/Associations
 – MONA/SNAP Workshops
 – AIAA SPACE 2014
 – IEEE Aerospace Conference 2014
 – Architecting Conferences (Ground Systems Architecture Workshops….)
 – Natl Defense Industry Association (NDIA)
• “Role Models/Pilot Programs”
 – ORS MSV
 – HPO HPIU
 – UAV/UAS/RPA /FLEX (Air and Munitions)
 – Possible Space Test Program option with SIV (modular developmental test)
• Develop Acquisition Workforce (STEM)
Empowering Broad Based Action

Software Modularity
- Hardware independent
- Adapts to changes with electronic ICDs
- Standard interfaces
- Fully reusable modules
- Software applications support different missions & payloads

Open
- License free standard
- Full insight into workings
- Improves interchangability

Physical Modularity
- Expandable
- Add future capability

Networked
- Decouples software from physical location
- Packetized (easy translation
- Enables security auditing
- MLS Foundation

Encourage Ideas, Activities and Actions to Lower Barriers to Entry
Generating Short Term Wins

- SPA/MONARCH: Validating viability of composable systems
- SNAP: Developing a MONA payload interface proof-of-concept demonstration (SMC XR with SDL Program)
- ORS/MSV: Validating viability of MONA bus architectures for DoD space applications (ORS Program)
- F6: Validating MONA for inter-platform and payload interface applications (DARPA Program)
- NASA CII: Common instrument interface guidelines
- SUMO: Validating business case for MONA and establishing a transition process (ODNI and Aerospace Corp Program); Industry Day in conjunction with National Space Symposium April 9-11
- MONA workshop @ NASA AMES 25 FEB 13 developed consensus on fundamental synergies among MONA activities and established desirability of ongoing technical interchange
System F6 – SNAP Architectural Comparison

F6 applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Privileged services</th>
<th>Software Services</th>
<th>Naming, management, time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>F6MDK RMI</td>
<td>F6MDK pub-sub</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Authentication and labeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>UDP</td>
<td>Routing, TCP, SCTP</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>IPv4</td>
<td>IPSec, IPv6</td>
<td></td>
</tr>
</tbody>
</table>

Software Applications

- **Software Services**
 - UDP
 - Naming, management, time
 - Networking

Hardware Interface

- **Physical**
 - F6WICS
 - SpeedPoint
 - 802.11
 - Ethernet
 - Spacewire

Networks

- **wired networks**
 - Ethernet
 - Spacewire

- **wireless networks**
 - F6WICS
 - SpeedPoint
 - 802.11

Characteristics of MONA

<table>
<thead>
<tr>
<th>Characteristics of MONA</th>
<th>SNAP</th>
<th>F6 Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modular Software (“Apps”)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Open (Physical & S/W Stds)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Networked</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Common (e.g., PnP) H/W Stds</td>
<td>✓</td>
<td>✓*</td>
</tr>
<tr>
<td>Spacecraft Drivers</td>
<td>✓</td>
<td>✓*</td>
</tr>
<tr>
<td>Payload Drivers</td>
<td>✓</td>
<td>✓*</td>
</tr>
<tr>
<td>Info Assurance</td>
<td>✓</td>
<td>✓*</td>
</tr>
<tr>
<td>Hardware Encryption</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>IPSEC</td>
<td></td>
<td>✓*</td>
</tr>
<tr>
<td>MLS</td>
<td></td>
<td>✓*</td>
</tr>
<tr>
<td>Quality of Service</td>
<td></td>
<td>✓*</td>
</tr>
</tbody>
</table>

*Planned, not implemented

Fundamentally, both SNAP and System F6 are instantiations of the MONA (Modular Open Network Architecture) approach.
Consolidating the Gains and Producing more Change

MONA Gains
- Technology for MONA is becoming available—Boeing Phantom Phoenix and NG Eagle M
- Government has ability to incentivize or influence MONA—creating a new market
- Industry is beginning to see cost savings and competitive advantages emerging with a MONA or similar approach
- MONA approach enables reduced timelines and costs savings

More Change
- Encryption/Information Assurance solutions
 - F6 residuals: MLS development
 - AFRL R&D and SBIRs
 - Potential SMC/XR-HPO SNAP follow-on effort
- Power management/control
- Develop additional enabling components called out in SUMO
- Standards development for Key Interfaces
 - Government Incentivized
 - Industry Developed
- Refine and Improve Requirements
 - Emerging/Refined HPO/HPIU requirements
 - Industry input from SNAP workshop—Survey
- Provide Training Through professional Societies / Open Forum

Developing the People with Additional Projects
Anchoring New Approaches in the Culture

• Continue MONA socialization
 – Industry working/steering group
 – SUMO engagement across NSS
 – Training, Training, Training

• Continue technology infusion
 – Step-in/step-out strategy
 – Tech demos, flight demos. standards
 – Broad collaboration: SMC/XR, HPO, ORSO, AFRL, DARPA, ODNI/SUMO, NRO, NASA, Industry

• Target operational on-ramps
 – Flight technology demonstrations/validations 2017+
 – POR infusion 2020+
 • Gives industry ample time to prepare to compete