Software Security Design Analysis For Net-centric NSS Systems

Richard Yee, CSSLP
Information Assurance Technology Department (IATD)

Ground System Architectures Workshop 2010

Computers and Software Division (CSD)
Engineering and Technology Group (ETG)
The Aerospace Corporation
1-4 March 2010
The Net-centric Charter

- **DoD Joint Vision 2020** - Promotes information superiority as a critical component to full spectrum dominance on the battlefield

- **Net-centric Warfare (or Operations)** – US DoD military doctrine based on the premise that the ability to share information and services across all DoD weapons, sensor and C2 systems can lead to a competitive warfighting advantage

- **Global Information Grid (GIG)** – US DoD communications framework for supporting Net-centric Operations through the inter-connection of weapons, sensor and C2 systems across all military service branches
How Do Existing Systems Typically Share Data?

Stovepipe Design Characteristics

- System-to-system interactions occur via application-specific protocols conducted over dedicated and encrypted network connections
- Establishing new system-to-system interactions usually involves additional hardware, software and maintenance costs

Security Risks

- Coarse-grained security controls for system-to-system interactions results in the establishment of a high level of trust between systems
- Potential for introducing vulnerabilities due to the “ad-hoc” nature of developing new interactions

Any Security Benefits?

- Other than dedicated interactions, stovepipe systems are basically closed to the rest of the world
- Limited user population simplifies security policy management
Developing Software for Future Ground Systems

• Service-based software architectural design appears to be a good fit for enabling agile C2 nodes that can support Net-centric Operations
 – Software systems are decomposed into discrete services that map to the mission operations and planning workflows of a SOC
 – Services have well-defined interfaces and are accessed using standard discovery and communication protocols
 – Service definition focuses on reusability in multiple, different application workflows
 – Governance policies provide predictable control over the lifecycle of services

• The web services set of technologies appears to be a popular choice for implementing a service-based software architecture
 – Designs based on SOAP and WS-* standards
 – Designs based on Representational State Transfer (REST)
 – Standards and best practices exist for securing service interactions
Levels of Net-centric Interactions

Web Browser Interactions

Org A

Org B

Web Portal

Service to Service Interactions

Org C

Org D

Service

Global Information Grid

Dynamic Workflow Interactions

Org E

Workflow Controller
Information Assurance In The Net-centric World

• Fundamental system security requirements never really change
 – Identify and authenticate users/systems
 – Authorize user/system actions
 – Audit user/system actions in support of accountability
 – Protect the integrity and confidentiality of data in transit, process and storage
 – Protect system availability

• Traditional IA mechanisms and policies associated with closed systems are still applicable, but not sufficient, for supporting a NetOps-enabled system
Net-centric Operations Expands Our Security Concerns

• Protection for interactions that potentially cross multiple security domains and use non-dedicated, potentially unsecured network connections

• Coarse-grain security controls are no longer adequate
 – Support for workflows that are dynamically constructed from multiple services
 – Support for workflows comprised of services where each service is potentially owned and managed by a different organization

• Security policy management increases in complexity
 – User population is potentially very large
 – User population is not necessarily known upfront
 – User population is highly dynamic

• Having a Net-centric Operations “door to the world” increases the risk of various cyber threats
 – Denial-Of-Service (DOS)
 – Attack and Penetration
 – Data Exfiltration
What is the Potential Impact of Net-centricity on System and Software Architecture?

• **System architecture must be designed to support secure, flexible interactions with the outside “GIG” world**
 - Establishment of Demilitarized Zones (DMZs)
 - Firewalls/Proxies
 - Intrusion Detection Systems (IDSs)
 - External/Internal Resource Partitioning

• **Application infrastructure must become security aware**
 - Mechanisms for authenticating users/systems
 - Mechanisms for controlling access to service-based resources
 - Transport or message-level integrity/confidentiality protection
Policy Management and Net-centricity

• Application security policies for closed systems with limited user populations are fairly easy to understand and manage
 – Centralized management of user security profiles for authentication
 – Simple user->permissions or Role-Based Access Control (RBAC) policies for authorization

• A SOC exporting NetOps services can become quickly overwhelmed having to solely manage security policies that support the dynamic user populations of the Net-centric world

• The SOC authority may choose to offload, or delegate, a portion of policy management responsibilities to other organizational entities within the Net-centric user population
 – A Memorandum Of Agreement (MOA) is formed with an organizational entity
 – The MOA allows the organizational entity to define a policy that dictates which of its users will have access to the NetOps services provided by the SOC
 – The MOA provides the basis for implementing a system-to-system trust relationship between the SOC and the organizational entity
Conceptual Secure Service-Based Architecture Implementation
Information Assurance, Architecture and Net-centric Operations

• Cyber threats become an increased risk as we transition from closed systems to NetOps-capable systems

• Traditional IA policies and mechanisms for closed systems must be augmented by policies and mechanisms that specifically address Net-centric Operations

• Mitigating the risks of cyber threats requires us to design security into our systems from the ground up
 – Design security into the system at the System Architecture level
 – Design security into the application at the Software Architecture level
Additional Information

Contact Information
 Name: Richard Yee
 Email: Richard.F.Yee@aero.org
 Phone: 310-336-2081

Detailed Report
 Name: Software Security Design Analysis for Net-Centric NSS Systems
 Aerospace Report #: TOR-2009(8550)-16
Questions?
Thank you
Backup Charts
Net-centric Operations for Satellite Ground Systems

• A Satellite Operations Center (SOC) may want to provide data products and services to individuals and systems in other organizations

• Some candidate functionality exposed as NetOps services
 – Resource Planning/Scheduling
 – Distributed Mission Planning
 – Status and Health
 – Mission Data Chain Products

• Functionality internal to a SOC and not likely exposed as NetOps services
 – Real-time Telemetry Processing
 – Real-time Track Processing
 – Command Processing
Architectural Security Design Patterns

- **Security Design Pattern** – Security specialization of a design pattern, which is a time-tested, reusable solution to a design problem that tends to recur across systems

- Formally defining a design pattern usually consists of:
 - Naming the pattern
 - Describing the problem, solution and any impacts
 - Providing examples

- Provides a common language for engineering groups to effectively and efficiently communicate design ideas

- Some key security design patterns that support Net-centric Operations
 - Basic Push/Pull Authorization Models
 - Brokered Authentication
 - Service Perimeter Guard
A Basic Vocabulary for Authorization Design

- **Policy Store (PS)** – Responsible for storing authorization policies

- **Attribute Store (AS)** – Responsible for retrieving or generating attribute-based security tokens in response to queries

- **Policy Decision Point (PDP)** – Responsible for deciding whether to grant or deny access based on a calculation of attribute assertions associated with the requesting user and the authorization policy in place to protect access to services

- **Policy Enforcement Point (PEP)** – Responsible for granting or denying access to a protected service based on the decision it receives from the PDP
Push Authorization Model

Organization A

Service Consumer

Attribute Provider

Organization B

Policy Enforcement Point

Policy Decision Point

Policy Store

Service Provider

1. Request Message

2. Security Assertion Token

3. Grant

4. Granted

5.

6.

7.

8.
Pull Authorization Model
Brokered Authentication Pattern

• Problem
 – In the NetOps model, where there is a many-to-many interaction cardinality between consumers and services, and there is the potential for dynamic workflows, support for direct consumer-to-service trust relationships is not easily managed

• Solution
 – Introduce a Broker Security Service (BSS) into the organization’s enterprise that is responsible for establishing organizational-level trust relationships
 – A consumer authenticates to its organization’s BSS
 – The BSS issues a security token to the consumer that contains assertions (e.g. identity, organization affiliation, authorizations, etc.) acceptable to target services for authenticating (and possibly authorizing) the consumer
 – Potentially a design element of the Push/Pull Authorization models

• Impacts
 – The Broker Security Service can become a single point of failure for cross-organizational interactions, so proper fault management and high availability are key quality attributes

• Implementation Technologies
 – Public/Private Key Certificates and Public Key Infrastructure (PKI)
 – Security Assertion Markup Language (SAML) security tokens
 – WS-Trust Security Token Service (STS)
 – WS-Security (WSS)
Service Perimeter Guard Pattern

• Problem
 – *Directly exposing NetOps services to GIG consumers can lead to several security risks*
 • Consumers have direct access to private network that the NetOps services reside on
 • Each NetOps service must be security aware (authentication, authorization,…,etc.)
 • NetOps services are directly exposed to a variety of cyber threats (e.g. DoS)

• Solution
 – *Introduce a Service Perimeter Guard boundary controller that is capable of proxying GIG consumer requests at the application message level and perform security functions such as authentication, authorization and availability protection*
 – *Potentially a design element of the Push/Pull Authorization models*

• Impacts
 – *All NetOps consumer-to-service interactions require intermediate processing by the Service Perimeter Guard, which can substantially impact performance*

• Implementation Technologies
 – *Web Service XML Gateway/Firewall*
Establishing a Trust Model for Conducting Secure Net-centric Operations

- **Trust Relationship** - an agreement between two entities on the policy or rules for sharing information/services

- A Pairwise Trust Relationship at the organizational level seems reasonable to implement
 - SOC A trusts SOC B to determine which of B’s users can access A’s services
 - SOC B trusts SOC A to determine which of A’s users can access B’s services

- A Trust Relationship may be implemented using a Public Key Infrastructure (PKI) (e.g. DoD PKI) and security tokens

- A security token is a form of security credential containing statements that assert facts about the token owner
 - Common assertions include identity, organization and authorization attributes
 - RBAC becomes generalized to Attribute-Based Access Control (ABAC)
 - Integrity protected via digital signature (private key of public/private key pair)

- Complex Trust Models may be too challenging to implement
 - Trust relationships with multiple levels of delegation (e.g. “A” delegates policy management to “B”, which in turn, delegates management to “C”)
 - Increased management and technical complexity