University of Southem California

USC Viterbi

School of Engineering

Software Architecture Research

Domain-Specific Model Analysis
and Code-Generation Frameworks

George Edwards

USC Center for Systems and Software Engineering

gedwards@usc.edu

University of Southemn California

USC Viterbi

School of Engineering

Software Architecture Research

Presentation Outline

e Background: Domain-Specific Languages and Model-Driven
Engineering

 Research Challenge: Interpretation of Domain-Specific
Models

* Promising Solution: Model Interpreter Frameworks

e XTEAM: Extensible Toolchain for Evaluation of Architectural
Models

University of Southemn California

USC Viterbi

School of Engineering

Why Use DSLs for Ground Systems?

 Heterogeneity of platforms and technologies

— Examples: multiple types of networks, data models, middleware

Software Architecture Research

— Result: no “one-size-fits-all” modeling language

e Close and continual interaction with external systems, including
electrical and mechanical systems
— Examples: external science data systems, on-board processing systems
— Result: models need to capture interfaces to external systems

e Strict operating requirements
— Examples: real-time data processing, robust fault-tolerance
— Result: models need to be analyzable, executable

University of Southem California

USC Viterbi

School of Engineering

Software Architecture Research

Model-Driven Engineering

 Model-driven engineering (MDE) combines domain-specific
languages (DSLs) with model interpreters
— Metamodels define elements, relationships, views, and constraints

— Model interpreters leverage domain-specific models for analysis,

generation, and transformation
Metamodeling Layer

Modeling Layer Interpreter Layer

Analysis and
Simulation Platforms

Meta mudeling
Environmaeant

Diomain Specific
Meodeling Environmsnt

|
u |
[y Formal Models

Metamodeling > Domain Spacific "'[
LEII"‘lgLIEI Madeling Lanpuages
Run-Time
= — — Ervironments
|
Metamodels ‘ ‘ 1
[Models Devalopgment

Artifacts

University of Southemn California

USC Viterbi

School of Engineering

Software Architecture Research

Challenge: Constructing Interpreters

Model Interpreter Implementation Tasks

1. Designing, developing, and
maintaining DSLs and interpreters is
difficult and expensive

— A model interpreter must be

constructed for each analysis that
will be applied to a model

— Reusing model interpreters for
different DSLs is hard

— Little guidance exists on how to
construct DSLs and interpreters

— The semantics applied to models
are opaque (embedded in code)

— Requires particular types of
expertise

— Common topic of research papers
in the modeling community

University of Southem California

Software Architecture Research

USC Viterbi

Simplifying Insight

Automatically synthesize
domain-specific model
interpreters the same way
that domain-specific model
editors are synthesized

Metamodel Editor

Types and
Relationships

Specifications

Run-time Platfarm
Specifications

School of Engineering

Model Editor Configurable
Metainterpreter Model Editor
Domain-
Indepandant M D_d el
Presentation Editor
Semantics Config
Files
Code Generator Configurable

Metainterpreter

Code Generator

Interpretation

Synthesis

N\

Domain-
Independent Coda
Run-time | | Generator
Platform Config
Semantics Files
Analysis Configurable
Metainterpreter Analysis Tool

Domain-

p| Independent |

Tool

Analysis

Analysis
Specifications

Semantics

Config
Files

N Analysis Ii
v

University of Southemn California

USC Viterbi

School of Engineering

Software Architecture Research

Solution: Model Interpreter Frameworks

 Use a model interpreter framework to implement
domain-specific analysis
— Implements a mapping from metamodel types to target
platform types

— Configured via plug-ins generated from a metamodel

Metamodel Editor Metamodel L =T ~, Model Editor Run-time Platform
e r-"'”_“\ Interpreter A~ i Framework
Mmammal7 I vy . EIEEIJIEI]H
' P tati ", i
. eeraniics. - rgﬂ:';g;g Model Interpreter (Modals)
Types End e g ammmaaan e - mewﬂrk 1
Relationships Jomain-Specfic FL E """""" -
\ Madels Sxecutf:lble g
Presentation . amaniics
. e ,
Specifications k{ Metamodel P |
\ Interpreter B T
................. . I
Rur-tirme v Run-time Platform - r-.bélel ﬂnlqi:rﬁlrele:
Platform . Semantics T~ y e e
Epedﬁmmns \\l\h e e m e m R E R R -] - —
p _ - .
"l N HA -

University of Southemn California

Software Architecture Research USC Viterbi

School of Engineering

The eXtensible Toolchain
for Evaluation of
Architectural Models

* A modeling environment and accompanying set of model
interpreter frameworks for software architectures

* Includes:

— A specialized metamodeling language

— A suite of metamodel interpreters and model interpreter frameworks
— Example extensions targeted towards resource-constrained and
mobile computing environments
* Provides the extensibility to easily accommodate both new
modeling language features and new architectural analyses

University of Southem California

USC Viterbi

School of Engineering

Software Architecture Research

XTEAM Usage

* Providing design rationale

Response Time (ms)

 Weighing architectural
trade-offs

 Discovering emergent
behavior of component
assemblies

ning Energy (J)

 Generating test cases and
validating component
implementations

University of Southemn California

USC Viterbi

School of Engineering

Software Architecture Research

Summary

e Building model interpreters to analyze and
generate code from domain-specific models is

hard

e Our methodology leverages a metamodel and
extensible interpreter frameworks to
automatically synthesize domain-specific model
Interpreters

University of Southemn California

USC Viterbi

School of Engineering

Software Architecture Research

For More Information

Visit the XTEAM website:
http://www-scf.usc.edu/~gedwards/xteam.html

XTEAM Publications:

George Edwards and Nenad Medvidovic, A Methodology and Framework for Creating
Domain-Specific Development Infrastructures, Proceedings of the 23rd IEEE ACM
International Conference on Automated Software Engineering (ASE), September 2008.

George Edwards, Chiyoung Seo, and Nenad Medvidovic, Model Interpreter Frameworks: A
Foundation for the Analysis of Domain-Specific Software Architectures, Journal of
Universal Computer Science (JUCS), Special Issue on Software Components,
Architectures and Reuse, 2008.

George Edwards, Chiyoung Seo, and Nenad Medvidovic, Construction of Analytic
Frameworks for Component-Based Architectures, Proceedings of the Brazilian
Symposium on Software Components, Architectures and Reuse (SBCARS), August 2007.

George Edwards, Sam Malek, and Nenad Medvidovic, Scenario-Driven Dynamic Analysis of
Distributed Architectures, Proceedings of the 10th International Conference on
Fundamental Approaches to Software Engineering (FASE), March 2007.

