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Presentation Outline

e Background: Domain-Specific Languages and Model-Driven
Engineering

 Research Challenge: Interpretation of Domain-Specific
Models

* Promising Solution: Model Interpreter Frameworks

e XTEAM: Extensible Toolchain for Evaluation of Architectural
Models
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Why Use DSLs for Ground Systems?

 Heterogeneity of platforms and technologies

— Examples: multiple types of networks, data models, middleware

Software Architecture Research

— Result: no “one-size-fits-all” modeling language

e Close and continual interaction with external systems, including
electrical and mechanical systems
— Examples: external science data systems, on-board processing systems
— Result: models need to capture interfaces to external systems

e Strict operating requirements
— Examples: real-time data processing, robust fault-tolerance
— Result: models need to be analyzable, executable
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Model-Driven Engineering

 Model-driven engineering (MDE) combines domain-specific
languages (DSLs) with model interpreters
— Metamodels define elements, relationships, views, and constraints

— Model interpreters leverage domain-specific models for analysis,

generation, and transformation
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Challenge: Constructing Interpreters

Model Interpreter Implementation Tasks

1. Designing, developing, and
maintaining DSLs and interpreters is
difficult and expensive

— A model interpreter must be

constructed for each analysis that
will be applied to a model

— Reusing model interpreters for
different DSLs is hard

— Little guidance exists on how to
construct DSLs and interpreters

— The semantics applied to models
are opaque (embedded in code)

— Requires particular types of
expertise

— Common topic of research papers
in the modeling community
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Simplifying Insight

Automatically synthesize
domain-specific model
interpreters the same way
that domain-specific model
editors are synthesized
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Solution: Model Interpreter Frameworks

 Use a model interpreter framework to implement
domain-specific analysis
— Implements a mapping from metamodel types to target
platform types

— Configured via plug-ins generated from a metamodel
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The eXtensible Toolchain
for Evaluation of
Architectural Models

* A modeling environment and accompanying set of model
interpreter frameworks for software architectures

* Includes:

— A specialized metamodeling language

— A suite of metamodel interpreters and model interpreter frameworks
— Example extensions targeted towards resource-constrained and
mobile computing environments
* Provides the extensibility to easily accommodate both new
modeling language features and new architectural analyses
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XTEAM Usage

* Providing design rationale

Response Time (ms)

 Weighing architectural
trade-offs

 Discovering emergent
behavior of component
assemblies

ning Energy (J)

 Generating test cases and
validating component
implementations
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Summary

e Building model interpreters to analyze and
generate code from domain-specific models is

hard

e Our methodology leverages a metamodel and
extensible interpreter frameworks to
automatically synthesize domain-specific model
Interpreters
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For More Information

Visit the XTEAM website:
http://www-scf.usc.edu/~gedwards/xteam.html
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George Edwards, Chiyoung Seo, and Nenad Medvidovic, Construction of Analytic
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