Fault Tolerant Architectures
Techniques Ensuring System Operation During Periods of High Loading and/or Component Failure

GSAW 2010
03 March 2010
Some Definitions from Wikipedia (where else?)

- **Fault Tolerant**
 - In *engineering*, **fault-tolerant design**, also known as **fail-safe design**, is a design that enables a system to continue operation, possibly at a reduced level (also known as **graceful degradation**), rather than failing completely, when some part of the system **fails**. The term is most commonly used to describe **computer**-based systems designed to continue more or less fully operational with, perhaps, a reduction in **throughput** or an increase in **response time** in the event of some partial failure. That is, the system as a whole is not stopped due to problems either in the **hardware** or the **software**.

- **Availability**
 - The degree to which a **system**, **subsystem**, or equipment is operable and in a committable state at the start of a mission, when the mission is called for at an unknown, *i.e.*, a random, time. Simply put, availability is the proportion of time a system is in a functioning condition.

 - Typical availability objectives are specified either in decimal fractions, such as 0.9998, or sometimes in a logarithmic unit called nines, which corresponds roughly to a number of nines following the decimal point, such as "five nines" for 0.99999 availability.
Classic High Availability n-Tiered Web Architecture

- High Availability achieved through clustering of hardware
 - Even higher availability achieved through backup, fail-over sites

- Money CAN buy you High Availability
 - Buy LOTS and LOTS of Iron
 - How many 9’s you get is a function of how much money you got!
 - Design the system such that even as components fail, users are unaware

- However, this only makes sense for high budget projects

- What approach does one take when you can’t throw truckloads of cash at the problem?
Degraded Operation is the Answer

- Projects on a budget need to accept the fact that as components of the system fail, the performance of the system will degrade
 - Response time is going to go down

- Question becomes “How bad is bad?”
 - What performance hit is bad enough that we need to take some action

- “Actionable” degraded performance is a function of what service is being rendered
 - Off-nominal delay of 5 seconds could be acceptable for a web page to an end-user.
 - Same delay could be completely unacceptable for a web service response

- Use case study of the application needs to be undertaken to determine acceptable degradation
 - Only you can know when the “LAME” bit needs to be set true

- So, how do you determine system is limping along?
- What do you do when your system is in the “Degraded State”?
Performance Watchdog Implementation

- Watchdog monitors critical performance parameters as determined by developers
 - Web page Response time on front end
 - Web Service delay
 - Critical App Server Calls
 - Database Queries
 - Etc........

- Watchdog logic determines when “bad” threshold has been crossed

- Signals application to enter “Degraded Mode” (DM)

- Once in DM, watchdog monitors to determine if things improve or not
Degraded Mode Processing

- Degraded Mode allows developers to implement as little or as much logic as required/desired
 - Simple response with a different page saying “Heavy Loading be patient”
 - Perhaps some more robust logic providing an expected delay time
 - Web services provide delay response
 - Defined in WSDL
 - Priority Scheme which throttles system

- Admin Console for System
 - System alerts provided to Sys Admin Team
 - JMX is an example in a Java environment

- Watchdog continues to monitor and can bring system out of Degraded Mode

- Expectation Management
 - Users are informed that performance is subpar and kept “In the loop”
 - Users will be more tolerant of a temporary, known degraded state
Failure is not an Option.....

“When bad things happened, we just calmly laid out all the options, and failure was not one of them. We never panicked, and we never gave up on finding a solution.”

-- Jerry C. Bostick
Flight Dynamics Officer (FDO) Apollo 13

“Success is not final, failure is not fatal: it is the courage to continue that counts.”

-- Winston Churchill