GROUND SYSTEMS ARCHITECTURES WORKSHOP – GSAW 2010

GROUND SPACE TECHNOLOGY INNOVATION

GMV'S EXPERIENCE

© GMV, 2010 Property of GMV All rights reserved

OVERVIEW

- 1. Introduction
- 2. The importance of technology innovation in industry
- 3. Difficulties deploying new technologies in Ground Systems
- 4. GMV's innovation strategy in Ground Systems
- 5. Technology innovation trends in ground systems at GMV

TECHNOLOGY INNOVATION INTRODUCTION

GMV BACKGROUND

- GMV is a privately-owned multinational established in 1984
- Offices in USA (Rockville, MD), Spain (HQ), France, Germany, Portugal, South Korea, Malaysia. Over 1,000 employees.
- Company origins and largest business area is space
- One of the largest space Ground System suppliers in the world
- Engineering services and turnkey IT systems and solutions for
 - > space
 - > aeronautics
 - > defense and security
 - > healthcare
 - transportation
 - > IT & telecommunications

GSAW 2010 - GROUND TECHNOLOGY

2010/03/03 5

GMV TARGET MARKET IN GROUND SYSTEMS

- GMV supplies ground systems and subsystems for all kinds of missions
- Specialized on
 - Telemetry & Command
 - Mission Planning & Scheduling
 - Flight Dynamics
 - Data Processing
 - Services (operations & mission analysis)
- 50% commercial, 50% institutional
- Small and highly competitive market. Few players.
- Highly sensitive to cost, even more lately
- Risk averse: reliability is key
- Customer base in commercial satellites has decreased significantly due to continuous consolidation

2010/03/03 Page 6

INNOVATION ONLY IF RISK IS LOW AND PRICE IS RIGHT

EVOLUTION VS REVOLUTION

TECHNOLOGY INNOVATION THE IMPORTANCE OF TECHNOLOGY INNOVATION IN INDVATION IN INDUSTRY

WHAT IS TECHNOLOGY INNOVATION?

- In the Ground Segment domain and given the scope of GMV's activities, we will understand technology innovation as any new ideas or methods implemented regarding any of the following elements:
 - Custom application software
 - COTS software
 - Middleware, Operating Systems
 - Programming languages
 - Hardware
 - Development methods
 - Standards
 - Protocols
 - Operational procedures
 - Data formats
 - Paradigms

Innovation by itself is not the goal

OUR MISSION: Provide our customers with systems fulfilling the desired combination of features, cost and deployment schedule

INNOVATION IN THE PRODUCTS OFFERED

- For a private company providing systems for the ground segment of space missions, innovation in the products offered is essential for its survival
- Enormous pressure from the market: If you do not innovate, someone else will and you will soon be obsolete
- Great difficulty to determine which new technologies available are here to stay or will soon be abandoned
- Not easy to distinguish a trendy but short-lived 'buzz word' from a powerful new paradigm

INNOVATION IN HOW THE PRODUCTS ARE DEVELOPED AND DEPLOYED

- A lot of the innovation in industry happens 'behind the scenes', impacting:
 - How new products are developed
 - How they are deployed, customized and tested to supply turn-key systems for specific missions
- Impacts tools, methods, quality system
- This part is key to
 - Remain competitive
 - Increase the reliability of the systems provided
 - Accommodate aggressive schedules, more and more typical

TECHNOLOGY INNOVATION DIFFICULTIES DEPLOYING NEW TECHNOLOGIES IN GROUND SYSTEMS

INNOVATION DIFFICULTIES

- This is a risky business. A problem can have a huge impact on the mission.
 - Nobody wants to be the first operator that uses a new product or a new technology:
- Ground Systems not always the best environment for the development of new technologies. Usually, only proven technologies are applied.
- Investment decisions made by operators usually do not take into account total cost of ownership throughout the mission
- The number of potential deployments of a new technology is small (small customer base). Return on investment for supplier may be small (or negative).
- Large variability of requirements across missions.

TECHNOLOGY INNOVATION GMV'S INNOVATION STRATEGY FOR GROUND SYSTEMS

INNOVATION PILLARS (1)

Internal actions

- Maintain technical excellence in core activities
- Tight control on costs to remain competitive. Innovation vs price
- Reduce response time to market
- Channel innovation through product lines
- Dynamic definition of product roadmaps
- Exploit synergies and technological exchange among different business units within our organization

Funding

- Reinvest revenue: 12% goes back to research & development
- Promote active cooperation with institutions and research centers

INNOVATION PILLARS (2)

Relationship with market:

- Aim for a wide and global customer base
- Continuous benchmarking with respect to products from competitors and custom systems developed for specific missions
- Participation in conferences and workshops
- Promote long-term agreements with customers (frame contracts) for continuous cooperation
- Feedback from customers to understand their needs, issues and wishes for future versions
- Active participation in groups defining future standards (e.g. CCSDS)
- Active participation in institutional initiatives, e.g.
 - NASA Goddard's GMSEC
 - ESA's EGOS

R&D, PRODUCT LINES AND MISSIONS

- Evolution of technology is gradual and is managed within the product line, in line with the long-term "road map"
- Many enhancements come from internal R&D efforts
- Deployments for different missions provide customer feedback and new SW components, some of them are fed back to products

FRAMEWORK STRATEGY

Instead we have used a **framework** strategy for each product line:

- Reference architecture (scalable)
- Suite of configurable components, some optional
- Open architecture, powerful API
- This approach reduces risk and cost in the development of new systems

INCORPORATING EXTERNAL TECHNOLOGY

GMV has successfully incorporated **technology from other parties** in some of its product lines. Some examples:

- Flight dynamics: PEPSOC, NAPEOS within *focusSuite*
- Satellite Control Systems: SCOS-2000 within hifly
- NASA
 - > Messaging: GMSEC
- **Open source**: Multiple examples:
 - > MySQL
 - > Eclipse RCP
 - > Jboss DROOLS

Significant investment needed to:

- Add support for certain types of missions (e.g. commercial GEOs)
- Add capabilities to make the products competitive in the global market
- Add support for new standards (e.g. XTCE, SLE)

OTHER ELEMENTS

Two instrumental elements of the technology innovation process at GMV are:

> Quality Management System:

- ISO9001 & CMMI Level 3 certified, moving towards CMMI Level 5.
- Essential to guarantee correct development process, stability of the products, repeatability, continuous improvement

> Knowledge Management System:

- Technology map
- Internal consulting
- Corporate intranet
- Powerful tools for project management and information search
- Aggressive training program
- Active participation in conferences

TECHNOLOGY INNOVATION A FEW HOT TRENDS

INNOVATION TRENDS (1): SOA

Service Oriented Architecture (SOA)

 "Services" are provided to and by the various sub-systems within the ground segment through a message bus using a standard Interface(I/F) protocol (several commercially available products)

INNOVATION TRENDS (2): OTHERS

Virtualization

- Servers are virtualized and can be deployed on the same hardware
- Reduces HW costs and vendor dependence, allows higher redundancy
- Some costs in performance, hard to configure, not fully operational
- **XTCE**: Standard for TM/TC Satellite Database
 - Standard is available but its adoption is slow
 - Not used by most satellite manufacturers yet
- Increased remote access from any kind of device. Access vs security.
- Increased automation: Has been a trend for several decades, but still lots of room for improvements

Thank you

Gonzalo Garcia

VP of Operations, GMV USA

