
University of Southern California
Center for Systems and Software Engineering

Current and Future Challenges for Software
Cost Estimation and Data Collection

Barry Boehm, USC-CSSE
GSAW 2010 Cost Data Workshop

March 3, 2010

University of Southern California
Center for Systems and Software Engineering

SummarySummary
• Current and future trends create challenges for DoD g

software data collection and analysis
– Mission challenges: emergent requirements, rapid change,

net-centric systems of systems, COTS and services, highnet centric systems of systems, COTS and services, high
assurance with agility

– DoD initiatives: DoDI 5000.02, evolutionary acquisition,
competitive prototyping, Software Resources Data Reportscompetitive prototyping, Software Resources Data Reports

• Updated software data definitions and estimation
methods could help DoD systems management
– Examples: incremental and evolutionary development;

COTS and services; net-centric systems of systems
– Further effort and coordination needed to converge on these

4 May 2009 ©USC-CSSE 2

University of Southern California
Center for Systems and Software Engineering

Current and Future DoD ChallengesCurrent and Future DoD Challenges
• Emergent requirements

Cannot prespecify requirements cost schedule EVMS– Cannot prespecify requirements, cost, schedule, EVMS
– Need to estimate and track early concurrent engineering

• Rapid change
– Long acquisition cycles breed obsolescence
– DoDI 5000.02 emphasis on evolutionary acquisition

• Net-centric systems of systems• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model, COTS, service-based, Brownfield systems
– New phenomenology, counting rules

• Always-on, never-fail systems
Need to balance agility and high assurance– Need to balance agility and high assurance

4 May 2009 3©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

The Broadening Early Cone of Uncertainty (CU)

• Need greater investments in
narrowing CU
– Mission, investment, legacy

Global Interactive,
Brownfield

X8

analysis
– Competitive prototyping
– Concurrent engineeringBatch, Greenfield

X4

X2

ConOps Specs/Plans IOC
– Associated estimation

methods and management
metrics

Local Interactive

• Larger systems will often
have subsystems with

CU’

Local Interactive,
Some Legacy

narrower CU’s

4 May 2009©USC-CSSE 4

University of Southern California
Center for Systems and Software Engineering

COSYSMO O ti l C tCOSYSMO Operational Concept

Size
Dri ers

Requirements
Interfaces
Scenarios
Algorithms COSYSMODrivers

Effort
Multipliers

Effort
Algorithms

+
Volatility Factor

p

Calibration
- Application factors

-8 factors
- Team factors

-6 factors
- Schedule driver WBS guided by

ISO/IEC 15288

54 May 2009 ©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

4. Rate Cost Drivers -4. Rate Cost Drivers
Application

6

University of Southern California
Center for Systems and Software Engineering

Next-Generation Systems ChallengesNext-Generation Systems Challenges
• Emergent requirements

E l Vi t l l b l ll b ti t t– Example: Virtual global collaboration support systems
– Need to manage early concurrent engineering

• Rapid changep g
– In competitive threats, technology, organizations,

environment
• Net centric systems of systems• Net-centric systems of systems

– Incomplete visibility and control of elements
• Model, COTS, service-based, Brownfield systems

– New phenomenology, counting rules
• Always-on, never-fail systems

N d t b l ilit d hi h– Need to balance agility and high assurance

7

University of Southern California
Center for Systems and Software Engineering

Rapid Change Creates a Late Cone of UncertaintyRapid Change Creates a Late Cone of Uncertainty
– Need evolutionary/incremental vs. one-shot development

Uncertainties in competition, p
technology, organizations,

mission priorities

©USC-CSSE 84 May 2009

University of Southern California
Center for Systems and Software Engineering

Evolutionary Acquisition per New DoDI 5000 02Evolutionary Acquisition per New DoDI 5000.02
No clean boundary between R&D and O&M

9 4 May 2009©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Incremental Development Productivity Decline (IDPD)Incremental Development Productivity Decline (IDPD)

• Example: Site Defense BMD Software
– 5 builds, 7 years, $100M; operational and support software
– Build 1 productivity over 300 LOC/person month
– Build 5 productivity under 150 LOC/PMp y

• Including Build 1-4 breakage, integration, rework
• 318% change in requirements across all builds
• IDPD factor = 20% productivity decrease per buildIDPD factor 20% productivity decrease per build

– Similar trends in later unprecedented systems
– Not unique to DoD: key source of Windows Vista delays

• Maintenance of full non-COTS SLOC, not ESLOC
– Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC
– Build 2: 400 KSLOC of Build 1 software to maintain integrateBuild 2: 400 KSLOC of Build 1 software to maintain, integrate

4 May 2009 10©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

IDPD Cost Drivers:IDPD Cost Drivers:
Conservative 4-Increment Example

• Some savings: more experienced personnel (5-20%)
• Depending on personnel turnover rates

• Some increases: code base growth diseconomies of• Some increases: code base growth, diseconomies of
scale, requirements volatility, user requests

• Breakage, maintenance of full code base (20-40%)g , ()
• Diseconomies of scale in development, integration

(10-25%)
• Requirements volatility; user requests (10-25%)

• Best case: 20% more effort (IDPD=6%)
• Worst case: 85% (IDPD=23%)• Worst case: 85% (IDPD=23%)

4 May 2009 11©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Effects of IDPD on Number of IncrementsEffects of IDPD on Number of Increments

M d l l ti d ti it d li t SLOC

16000
18000
20000

• Model relating productivity decline to
number of builds needed to reach 8M
SLOC Full Operational Capability

• Assumes Build 1 production of 2M SLOC
8M

SLOC

6000
8000

10000
12000
14000

Cumulative
 KSLOC

0% productivity decline
10% productivity decline
15% productivity decline

Assumes Build 1 production of 2M SLOC
@ 100 SLOC/PM
– 20000 PM/ 24 mo. = 833 developers
– Constant staff size for all builds

0
2000
4000
6000

1 2 3 4 5 6 7 8

15% productivity decline
20% productivity decline

Constant staff size for all builds
• Analysis varies the productivity decline

per build
– Extremely important to determine the

2M

Build

y
incremental development
productivity decline (IDPD) factor per
build

4 May 2009 12©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Incremental Development Data ChallengesIncremental Development Data Challenges
• Breakage effects on previous increments

– Modified, added, deleted SLOC: need Code Count with diff toolModified, added, deleted SLOC: need Code Count with diff tool
• Accounting for breakage effort

– Charged to current increment or I&T budget (IDPD)
• IDPD effects may differ by type of software

– “Breakage ESLOC” added to next increment
– Hard to track phase and activity distributions

• Hard to spread initial requirements and architecture effort

• Size and effort reporting
– Often reported cumulatively– Often reported cumulatively
– Subtracting previous increment size may miss deleted code

• Time-certain development
– Which features completed? (Fully? Partly? Deferred?)

4 May 2009 ©USC-CSSE 13

University of Southern California
Center for Systems and Software Engineering

“Equivalent SLOC” Paradoxes

• Not a measure of software size
• Not a measure of software effort

N f d li d f bili• Not a measure of delivered software capability
• A quantity derived from software component sizes

and reuse factors that helps estimate effortand reuse factors that helps estimate effort
• Once a product or increment is developed, its

ESLOC loses its identity
– Its size expands into full SLOC
– Can apply reuse factors to this to determine an ESLOC

quantity for the next increment
• But this has no relation to the product’s size

4 May 2009 ©USC-CSSE 14

University of Southern California
Center for Systems and Software Engineering

Current and Future DoD ChallengesCurrent and Future DoD Challenges
• Emergent requirements

Cannot prespecify requirements cost schedule EVMS– Cannot prespecify requirements, cost, schedule, EVMS
– Need to estimate and track early concurrent engineering

• Rapid change
– Long acquisition cycles breed obsolescence
– DoDI 5000.02 emphasis on evolutionary acquisition

• Net-centric systems of systems• Net-centric systems of systems
– Incomplete visibility and control of elements

• Model, COTS, service-based, Brownfield systems
– New phenomenology, counting rules

• Always-on, never-fail systems
Need to balance agility and high assurance– Need to balance agility and high assurance

4 May 2009 15©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Net Centric Systems of Systems ChallengesNet-Centric Systems of Systems Challenges
• Need for rapid adaptation to change

See first understand first act first finish decisively– See first, understand first, act first, finish decisively
• Built-in authority-responsibility mismatches

– Increasing as authority decreases through Directed,
Acknowledged, Collaborative, and Virtual SoS classes

• Severe diseconomies of scale
– Weak early architecture and risk resolutionWeak early architecture and risk resolution
– Need thorough flowdown/up of estimates, actuals
– More complex integration and test preparation, execution

• More software intensive
– Best to use parallel software WBS

• Many different classes of system elementsMany different classes of system elements
– One-size-fits-all cost models a poor fit

4 May 2009 16©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Add d C t f W k A hit tiAdded Cost of Weak Architecting
Calibration of COCOMO II Architecture and Risk Resolution

factor to 161 project data pointsp j p

©USC-CSSE 17

University of Southern California
Center for Systems and Software Engineering

Model COTS Service-Based Brownfield SystemsModel, COTS, Service-Based, Brownfield Systems
New phenomenology, counting rules

• Product generation from model directives• Product generation from model directives
– Treat as very high level language: count directives

• Sizing COTS and services use needs improvementg
– Unrealistic to use COTS, services SLOC for sizing
– Alternatives: function point elements, amount of glue code,

activity-based assessment costing, tailoring parametersactivity based assessment costing, tailoring parameters
• Brownfield legacy constraints, re-engineering

– Re-engineer legacy code to fit new architecture
– Apply reuse model for re-engineering

• A common framework for reuse, incremental
development, maintenance, legacy re-engineering?development, maintenance, legacy re engineering?
– All involve reusing, modifying, deleting existing software

4 May 2009 18©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Data definition topics for discussionData definition topics for discussion
• Ways to treat data elements

COTS other OTS (open source; services; GOTS; reuse; legacy code)– COTS, other OTS (open source; services; GOTS; reuse; legacy code)
– Other size units (function points object points, use case points, etc.)
– Generated code: counting generator directives
– Requirements volatilityq y
– Rolling up CSCIs into systems
– Cost model inputs and outputs (e.g., submitting estimate files)

• Scope issues
– Cost drivers, Scale factors
– Reuse parameters: Software Understanding , Programmer Unfamiliarity
– Phases included: hardware-software integration; systems of systems

integration transition maintenanceintegration, transition, maintenance
– WBS elements and labor categories included
– Parallel software WBS

• How to involve various stakeholders
– Government, industry, commercial cost estimation organizations

4 May 2009 ©USC-CSSE 19

University of Southern California
Center for Systems and Software Engineering

Summary
• Current and future trends create challenges for DoD• Current and future trends create challenges for DoD

software data collection and analysis
– Mission challenges: emergent requirements, rapid change,

net-centric systems of systems, COTS and services, high
assurance with agility

– DoD initiatives: DoDI 5000.02, evolutionary acquisition,
competitive prototyping, Software Resources Data Reports

• Updated software data definitions and estimation
methods could help DoD systems managementmethods could help DoD systems management
– Examples: incremental and evolutionary development;

COTS and services; net-centric systems of systems
Further effort and coordination needed to converge on these– Further effort and coordination needed to converge on these

4 May 2009 ©USC-CSSE 20

University of Southern California
Center for Systems and Software Engineering

ReferencesReferences
Boehm, B., “Some Future Trends and Implications for Systems and Software Engineering Processes”,

Systems Engineering 9(1), pp. 1-19, 2006.
Boehm, B. and Lane J., "21st Century Processes for Acquiring 21st Century Software-Intensive Systems ofBoehm, B. and Lane J., 21st Century Processes for Acquiring 21st Century Software Intensive Systems of

Systems." CrossTalk: Vol. 19, No. 5, pp.4-9, 2006.
Boehm, B., and Lane, J., “Using the ICM to Integrate System Acquisition, Systems Engineering, and

Software Engineering,” CrossTalk, October 2007, pp. 4-9.
Boehm, B., Brown, A.W.. Clark, B., Madachy, R., Reifer, D., et al., Software Cost Estimation with COCOMO II,

Prentice Hall, 2000.
Dahmann, J. (2007); “Systems of Systems Challenges for Systems Engineering”, Systems and SoftwareDahmann, J. (2007); Systems of Systems Challenges for Systems Engineering , Systems and Software

Technology Conference, June 2007.
Department of Defense (DoD), Defense Acquisition Guidebook, version 1.6, http://akss.dau.mil/dag/, 2006.
Department of Defense (DoD), Instruction 5000.2, Operation of the Defense Acquisition System, May 2003.
Department of Defense (DoD), Systems Engineering Plan Preparation Guide, USD(AT&L), 2004.
Galorath D and Evans M Software Sizing Estimation and Risk Management Auerbach 2006Galorath, D., and Evans, M., Software Sizing, Estimation, and Risk Management, Auerbach, 2006.
Lane, J. and Boehm, B., “Modern Tools to Support DoD Software-Intensive System of Systems Cost

Estimation, DACS State of the Art Report, also Tech Report USC-CSSE-2007-716
Lane, J., Valerdi, R., “Synthesizing System-of-Systems Concepts for Use in Cost Modeling,” Systems

Engineering, Vol. 10, No. 4, December 2007.
Madachy, R., “Cost Model Comparison,” Proceedings 21st, COCOMO/SCM Forum, November, 2006,

http://csse usc edu/events/2006/CIIForum/pages/program htmlhttp://csse.usc.edu/events/2006/CIIForum/pages/program.html
Maier, M., “Architecting Principles for Systems-of-Systems”; Systems Engineering, Vol. 1, No. 4 (pp 267-

284).
Northrop, L., et al., Ultra-Large-Scale Systems: The Software Challenge of the Future, Software

Engineering Institute, 2006.
Reifer, D., “Let the Numbers Do the Talking,” CrossTalk, March 2002, pp. 4-8.

4 May 2009 ©USC-CSSE 21

Valerdi, R, Systems Engineering Cost Estimation with COSYSMO, Wiley, 2009 (to appear)

University of Southern California
Center for Systems and Software Engineering

Backup ChartsBackup Charts

University of Southern California
Center for Systems and Software Engineering

How Much Architecting is Enough?
100

e

How Much Architecting is Enough?
- Larger projects need more

70

80

90

al
l S

ch
ed

ul
e

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

10000
KSLOC

50

60

70

ed
 to

 O
ve

ra (COCOMO II RESL factor)

Total % Added Schedule

Sweet Spot

20

30

40

f T
im

e
A

dd

100 KSLOC

Sweet Spot Drivers:

R id Ch l ft d

0

10

20

0 10 20 30 40 50 60

Pe
rc

en
t o 10 KSLOC Rapid Change: leftward

High Assurance: rightward

4 May 2009 ©USC-CSSE 23

0 10 20 30 40 50 60

Percent of Time Added for Architecture and
Risk Resolution

University of Southern California
Center for Systems and Software Engineering

TRW/COCOMO II Experience Factory: IV
Rescope

System objectives:
fcn’y, perf., quality

Execute
project
to next

Milestone
Revise

Mil t

N
o

Yes

Cost,
Sched,
Risks

Ok?COCOMO II
Corporate parameters:
tools, processes, reuse

Milestone Milestones,
Plans,

Resources

No

M/S
Results

YesRisks

Milestone plans,
resources

Ok?

Evaluate Accumulate

Revised
ExpectationsYes

Milestone
expectations

Improved
Corporate

Parameters

Cost, Sched,
Quality
drivers

Recalibrate
COCOMO II

Done?

End

Corporate
SW

Improvement
Strategies

COCOMO II
calibration

data Yes

No

24

End

4 May 2009 24©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Choosing and Costingg g
Incremental Development Forms

Type Examples Pros Cons Cost Estimation

Evolutionary
Sequential

Small: Agile
Large: Evolutionary

Development

Adaptability to
change

Easiest-first; late,
costly breakage

Small: Planning-poker-type
Large: Parametric with IDPD

Prespecified
Sequential

Platform base plus
PPPIs

Prespecifiable
full-capability
requirements

Emergent
requirements or

rapid change

COINCOMO with no increment
overlap

requirements rapid change

Overlapped
Evolutionary

Product lines with
ultrafast change

Modular product
line

Cross-increment
breakage

Parametric with IDPD and
Requirements Volatility

Rebaselining
Mainstream

product lines;
High assurance

with rapid change
Highly coupled
systems with

COINCOMO, IDPD for
development; COSYSMO forg

Evolutionary
product lines;

Systems of
systems

with rapid change systems with
very rapid change

development; COSYSMO for
rebaselining

IDPD: Incremental Development Productivity Decline, due to earlier increments breakage, increasing
code base to integratecode base to integrate

PPPIs: Pre-Planned Product Improvements

COINCOMO: COCOMO Incremental Development Model (COCOMO II book, Appendix B)

COSYSMO: Systems Engineering Cost Model (in-process COSYSMO book)

©USC-CSSE 25

All Cost Estimation approaches also include expert-judgment cross-check.

4 May 2009

University of Southern California
Center for Systems and Software Engineering

Compositional approaches: Directed systems of systems

Inception
Elaboration

Source SoS
Selection Architecting

Increment 1 Increments
2,… n

LCO LCA IOC1

Customer,
Users

LSI –
Agile

RFP, SOW,
Evaluations

,
Contracting

Similar withse
ss

or

t-
fa

lls

C
O

LC

A
t

al
l l

ev
el

s Assess
sources of
change;

Negotiate
b li d

Effort COSYSMO-like.

Schedule =
Effort/Staff

Agile

LSI IPTs –
Agile

Effort/Staff
Similar, with

added change
traffic from

users…

A
ss

m
pa

ti
bi

lit
y,

 s
ho f

R
ew

or
k

LC
P

ac
ka

ge
s

at

COSOSIMO

rebaselined
LCA2

package at
all levels
COSOSIMO

-like

Try to model
ideal staff size

Suppliers –
Agile

Suppliers –
P o o l

co
mCOSOSIMO

-like
-like

Similar, withDevelop to
LCA1

Effort/staff
at all levels

LCA2
pp

PD – V&V

LSI –
Integrators

Proposals
,

added re-
baselineing risks

and rework…

spec, V&VCORADMO
-like

Degree of
Completene

ss

risks,
rework

Proposal

risks,
rework

Risk-manage
slow-

performer,
completeness

risks,
rework

Integrate

COSOSIMO
risks,

kProposal
Feasibility

p COSOSIMO
-like

LCA2 shortfalls

rework

4 May 2009 26©USC-CSSE

University of Southern California
Center for Systems and Software Engineering

Comparison of Cost Model Parameters
Parameter Aspects COSYSMO COSOSIMO

Size drivers # of system requirements
of system interfaces

of SoS requirements
of SoS interface protocols

operational scenarios
algorithms

of constituent systems
of constituent system organizations
operational scenarios

“Product” characteristics Size/complexity Size/complexity
Requirements understanding
Architecture understanding
Level of service requirements
of recursive levels in design
Migration complexity

Requirements understanding
Architecture understanding
Level of service requirements
Component system maturity and stability
Component system readinessMigration complexity

Technology risk
#/ diversity of platforms/installations
Level of documentation

Component system readiness

Process characteristics Process capability Maturity of processes
Multi-site coordination
Tool support

Tool support
Cost/schedule compatibility
SoS risk resolution

People characteristics Stakeholder team cohesion Stakeholder team cohesion

4 May 2009 ©USC-CSSE 27

Personnel/team capability
Personnel experience/continuity

SoS team capability

University of Southern California
Center for Systems and Software Engineering

SoSE Core Element Mapping toSoSE Core Element Mapping to
COSOSIMO Sub-models

Translating UnderstandingTranslating
capability
objectives

Developing,

Understanding
systems &

relationships
(includes plans)Planning,

Requirements

COSOSIMO

p g,
evolving and
maintaining

SoS
design/arch

Addressing new
requirements

q
Management,

and Architecting
(PRA)

q
& options

Orchestrating
upgrades

to SoS

Source Selection
and Supplier

Oversight (SO)
Assessing
(actual)

performance
to capability
objectives

Monitoring

O e s g t (SO)

SoS Integration
and Testing

4 May 2009 ©USC-CSSE28

Monitoring
& assessing

changes
(I&T)

University of Southern California
Center for Systems and Software Engineering

Achieving Agility and High Assurance -IAchieving Agility and High Assurance I
Using timeboxed or time-certain development

Precise costing unnecessary; feature set as dependent variable

Rapid
Change

Short
Development
Increments

g

Short, Stabilized
Increment N Transition/O&M

Foreseeable
Change

(Plan)
Development

Of Increment N

Increment N Transition/O&M

Increment N Baseline

(Plan)

High
Assurance Stable Development

4 May 2009 ©USC-CSSE29

Assurance Stable Development
Increments

University of Southern California
Center for Systems and Software Engineering

Achieving Agility and High Assurance -IIAchieving Agility and High Assurance -II
Unforeseeable Change (Adapt)

Agile
Rebaselining for

Future Increments

Rapid
Change

Future Increment Baselines

utu e c e e ts

Short Stabilized

Deferrals

I t N T iti /

Short
Development
Increments

Foreseeable
Change

(Plan) Short, Stabilized
Development

of Increment N

A tif t C

Increment N Transition/

Operations and MaintenanceIncrement N Baseline

(Plan)

Stable Development
Increments

Verification and
Validation (V&V)

Artifacts Concerns
High

Assurance Future V&V
Resources

Current V&V
Resources

Increments

4 May 2009 ©USC-CSSE30

Validation (V&V)
of Increment N

Resources

Continuous V&V

