Future Ground System Software Estimation and Metrics

GSAW Working Group Summary
Session 11F
March 4, 2010
Working Group Topics

- Air Force Cost Analysis Agency Study Overview
- Next Generation Software Estimation and Metrics
- Proposed Metrics Definition Highlights
- Productivity Data Analysis and Issues
Study Background

- Goal is to improve the quality and consistency of estimating methods across cost agencies and program offices through guidance, standardization, and knowledge sharing.

- Project led by the Air Force Cost Analysis Agency (AFCAA) working with service cost agencies, and assisted by University of Southern California and Naval Postgraduate School.

- We will publish the AFCAA Software Cost Estimation Metrics Manual to help analysts and decision makers develop accurate, easy and quick software cost estimates for avionics, space, ground, and shipboard platforms.
Stakeholder Communities

- Research is collaborative across heterogeneous stakeholder communities who have helped us in refining our data definition framework, domain taxonomy and providing us project data.
 - Government agencies
 - Tool Vendors
 - Industry
 - Academia
AFCAA Software Cost Estimation Metrics Manual

Chapter 1: Software Estimation Principles
Chapter 2: Product Sizing
Chapter 3: Product Growth
Chapter 4: Effective SLOC
Chapter 5: Historical Productivity
Chapter 6: Model Calibration
Chapter 7: Calibrated SLIM-ESTIMATE
Chapter 8: Cost Risk and Uncertainty Metrics
Chapter 9: Data Normalization
Chapter 10: Software Resource Data Report
Chapter 11: Software Maintenance
Chapter 12: Lessons Learned
Next Generation Software Estimation and Metrics Summary

• Current and future trends create challenges for systems and software data collection and analysis
 – Metrics and “productivity”: “equivalent” size; requirements/design/product/value metrics; productivity growth and decline phenomena
 – Cost drivers: effects of complexity, volatility, architecture
 – Alternative processes: rapid/agile; systems of systems; evolutionary development
 – Model integration: systems and software; cost, schedule, and quality; costs and benefits

• Updated systems and software data definitions and estimation methods needed for good management
Incremental Development Productivity Decline (IDPD)

• Example: Site Defense BMD Software
 – 5 builds, 7 years, $100M; operational and support software
 – Build 1 software productivity over 200 LOC/person month
 – Build 5 software productivity under 100 LOC/PM
 • Including Build 1-4 breakage, integration, rework
 • 318% change in requirements across all builds
 • IDPD factor = 20% productivity decrease per build
 – Similar trends in later unprecedented systems
 – Not unique to DoD: key source of Windows Vista delays

• Maintenance of full non-COTS SLOC, not ESLOC
 – Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC
 – Build 2: 400 KSLOC of Build 1 software to maintain, integrate
Proposed Metrics Definition Highlights

• Data quality and standardization issues
 – No reporting of Equivalent Code Size Inputs: Design Modified, Code Modified, Integration Testing Modified, Software Understandability, Programmer Unfamiliarity, Type (Modified, Reused, Adopted, Managed, and Used Code)
 – No common SLOC reporting – logical, physical, etc.
 – No standard definitions – Application Domain, Build, Increment, Spiral,…
 – No common effort reporting – analysis, design, code, test, CM, QA,…
 – No common code counting tool
 – Product size only reported in lines of code
 – No reporting of quality measures – defect density, defect containment, etc.
Proposed Metrics Definition Highlights

• Limited empirical research within DoD on other contributors to productivity besides effort and size:
 – Operating Environment, Application Domain, and Product Complexity
 – Personnel Capability
 – Required Reliability
 – Quality – Defect Density, Defect Containment
 – Integrating code from previous deliveries – Builds, Spirals, Increments, etc.
 – Converting to Equivalent SLOC

• Reported code sizes for Modified, Reused, Adopted, Managed, and Used add no value to a cost estimate unless they translate into “equivalent SLOC.”

• Manual will discuss and address these issues
Productivity Analysis from SRDR Data

<table>
<thead>
<tr>
<th>Application Domain</th>
<th>Avionics</th>
<th>Fixed Ground</th>
<th>Missile</th>
<th>Mobile Ground</th>
<th>Shipboard</th>
<th>Unmanned Space</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Systems</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Command & Control</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Communications</td>
<td>1</td>
<td>35</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>Controls & Displays</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Executive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Information Assurance</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Infrastructure or Middleware</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mission Management</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Mission Planning</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Process Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Scientific Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Sensor Control and Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Simulation & Modeling</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Spacecraft Payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Test & Evaluation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tool & Tool Systems</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Training</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>68</td>
<td>10</td>
<td>16</td>
<td>25</td>
<td>2</td>
<td>142</td>
</tr>
</tbody>
</table>

Notes:
SRDR: Software Resources Data Report
Simple Cost Estimating Relationships

PM = A * (EKSLOC)^B

<table>
<thead>
<tr>
<th>Domain Name</th>
<th>Data #</th>
<th>Estimation Formula</th>
<th>R-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command & Control</td>
<td>14</td>
<td>Y = 13.48 * X ^ 0.70</td>
<td>0.84</td>
</tr>
<tr>
<td>Communications</td>
<td>39</td>
<td>Y = 19.58 * X ^ 0.59</td>
<td>0.62</td>
</tr>
<tr>
<td>Control & Displays</td>
<td>7</td>
<td>Y = 53.84 * X ^ 0.44</td>
<td>0.70</td>
</tr>
<tr>
<td>Mission Management</td>
<td>18</td>
<td>Y = 17.62 * X ^ 0.79</td>
<td>0.58</td>
</tr>
<tr>
<td>Mission Planning</td>
<td>5</td>
<td>Y = 33.03 * X ^ 0.42</td>
<td>0.64</td>
</tr>
<tr>
<td>Sensor Control & Processing</td>
<td>12</td>
<td>Y = 144.74 * X ^ 0.27</td>
<td>0.15</td>
</tr>
<tr>
<td>Simulation</td>
<td>12</td>
<td>Y = 68.97 * X ^ 0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>Weapons Delivery & Control</td>
<td>11</td>
<td>Y = 9.42 * X ^ 0.84</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Preliminary Results - Do Not Use!

Notes:
PM: Person Months (152 labor hours / month)
EKSLOC: Equivalent Thousands of Source Lines of Code
Data Analysis Issues

Preliminary Results - Do Not Use!
Productivity Analysis Issues

• Why do some data have the same amount of effort for widely varying size?

• Why do some data have similar sizes for widely varying effort?

• Will the information that explains the differences be available early in the lifecycle?

• Are there too many Application Domains (18) and Environments (6)?
If you are interested in viewing draft copies of the AFCAA Software Cost Estimation Metrics Manual, contact:
Wilson Rosa
wilson.rosa@pentagon.af.mil
Or
Ray Madachy
rjmadach@nps.edu