

Session 15

Workshop Summary

Dan Balderston Judy Kerner The Aerospace Corporation

- **Innovation**
 - Drivers:
 - Huge and growing need for information, usable product
 - Obsolescence, consolidation, lifecycle costs, improve efficiency
 - Opportunities:
 - What can I do from my iPhone? (tasking, data access)
 - How can I effectively share my data?
 - What new products can I create from current data?
 - Challenges:
 - Culture: "Why haven't GS's evolved like the internet?"
 - Security (data, TT&C), user tasking, data fusion, timeliness, user acceptance
 - Successes:
 - Legacy migrations, multi-mission integration, enabling IT technologies
 - Usable data exposure (e.g., sensor sidecars)
 - Lessons:

2

- Innovation takes persistence, prototyping, commitment
- Share Lessons Learned, especially failures

- Cyber Threat
 - Ubiquitous
 - What are specific threats? Risks? What is the guidance? What are the standards? What are the solutions? <u>What are all the guestions?</u>
 - How to secure the data vs. securing servers (share securely)
- "Harmonisation" as path toward interoperability
 - Alternative to full systems integration
 - Evolution over revolution
- Practical Modeling
 - Model-Driven Engineering, architectures, development
 - Challenges speaking models to stakeholders
 - Mandatory prototyping

- Stovepipes
 - Generally new systems are being engineered for sharing
 - Legacy "stovepipes" being upgraded with SOA, net-centric adapters

• COTS – less blind acceptance

- Realities of licensing, lifecycle costs, upgrade timing, integration, "configurability", incompatibilities.
- Open architectures, standards are viable, with careful use of COTS

• Workforce

- Current workforce continues decline
- Where will the future workforce come from?
 - Academic sponsorship, research (software)
 - K-12 engineering / sciences

- Need to Engage Users
 - Who are the users? Ops, Mission Planners, Analysts, Data producers, Scientists, the Public
 - Need to fit in the users' "Decision Loop"
 - Awareness, acceptance an uptick?
- Exponential Growth (explosive?)
 - Appetite for data
 - Fusion, production, exploitation opportunities
 - User base
 - IP addresses
 - Space Objects
 - Complexity Challenges!

- Less Coupling of Hardware and Software
 - Virtualization, Cloud, Grid, Homogenous platform base
 - Vendor / platform neutral software systems
- Multi-Mission integration
 - Consolidation of SOCs, ground systems, System-of-System integration
 - MMSOC, MI-S, McMurdo, Intelsat, GDPAA
- Agility, Flexibility
 - ORS, cubesats, small /short agile missions
- Standards, commonality
 - Broader standards adoption, consideration
 - xTEDS, XTCE, CCSDS, SCPS, GMSEC message bus
 - Product Line approaches, initiatives
- Cybersecurity

- Space Situational Awareness
 - More vehicles, smaller objects, debris, conjunctions (and avoidance)
 - International community participation (ESA initiative)
- Evolution (vs. revolution)
 - Funding constraints
 - Technology insertion, refresh, and adaptation of legacy programs
 - Extended mission durations
- Use of open systems architectures
 - Considering vendor COTS vs. open source trade-offs.
- Managing complexity
 - Visualization for developers: Model-based engineering
 - Visualization for users: complex operations, fused products

...and now for something completely different

- Phased Array Geodesic Antenna
 - Potential for quantum change in Ground System operations
- IP-Based Crypto
 - Fundamental changes to secure GS network architectures
- Buy your own Cubesat (\$40K from Pumpkin)
 - Do I buy a Lexus or build MySat??

What we heard

• Einstein

- We cannot solve problems by using the same kind of thinking we used when we created them
- I will back up my laptop every day! (confirming handwriting)
- Ground System
 - Ground Systems should be viewed as a "Public Utility"
 - Can build spacecraft quickly, but if the GS and ops team aren't ready, you don't have a capability
 - The Ground System is *the* flexible part of the system.
- Innovation
 - (Achieving innovation is..) the sweet-spot between requirements, technology, cost-schedule
 - Don't assume innovation won't be IA-compliant. Prototype innovation then work IA for operations.
 - The new system shall do everything that the legacy system does (faster), plus a lot more
 - "In Silico" = development through simulation
- End-Product
 - Hardware is a toaster, software processes the data. It's the data that's most important.
 - Data must be transportable, discoverable, usable
- A.C.T.: Access, Content, Timeliness
 - Access: To large datasets, full product
 - Content : Fully exploited, relevant, comprehensive, not "Digital Junkyards"
 - Timeliness: Don't look at your calendar, look at your watch
 - "We want more, now" (like teenagers)

- GSAW Community is thriving, expanding
 - GS experts around the world are here, available, focused
 - Tutorials, Working Groups, Evening Sessions = best attendance yet People are collaborating. Looking for commonality, opportunities !!! People are sharing a common vocabulary!!
 <u>Innovation sharing is feeding innovation!</u>
- Reach of Ground System missions
 - Global (Europe, Australia, Asia, the Americas, Antarctica, ...)
 - Inter-planetary (LCROSS, LADEE, Solar System Internet)
 - Galaxy (Kepler)

Go forth and *Innovate* ...

... and come back and share your stories at GSAW 2011 !!

