Common Ground Architecture
Lessons Learned and Identified Barriers to Overcome

Dr. Michelle Watton Harper
Booz Allen Hamilton

March 3, 2015
Agenda

- Common Ground System Overview
 - Background / Motivation
 - Current Approach
 - Results & Findings

- Leveraging Existing Common Ground Systems and Lessons Learned
 - State of Technology Overview - Key Tenents for CGS Implementations
 - State of Technology Overview - Key Challenges in CGS Implementation

- Example ECGS Data Center Architecture Implementation

- Study Conclusions
Common Ground System
Background / Motivation

- The existing Department of Defense (DoD) satellite ground systems infrastructure is redundant. Current infrastructure includes 10 satellites and 8 ground systems.

- Department of Defense spent $13.7 billion on ground stations around the world performing the same or similar common functions.

- In April 2013, General Pawlikowski directed SMC/EN to explore development of a SMC technical baseline for the ground systems within her portfolio for Phase I of the study.
Common Ground System

Phase I Approach

Phase I: Develop As-Is Baseline

1.) Review SMC programs, DoD, NASA/NOAA, NRO and Commercial existing common ground system approaches.

2.) Provide recommendations based on lessons learned from CGS initiatives

3.) Identify potential common ground system items:
 - Ground services, interfaces, and activities
 - Ground equipment infrastructure (satellite dishes, facilities, power, TT&C processing, crypto)
 - Processing of mission data
 - Mission data back up services and stations depending on the desired level of resiliency required
 - Making data available (exposing) for a more situational awareness ground systems

4.) Develop an Enterprise Reference Model (ERM) identifying the key common ground system items

Future Phases: Develop Reference Architecture

1.) XR to develop a demo of a Common Ground Architecture
SMC As-Is Architecture Technical Baseline
Phase I Data Gathering & Methodology

Data Gathering

- Includes DODAF architecture views per requirements of CJCSI 3170 and 6212.1F
- Programs included: AEHF, GBS, CCSC, EPS, WGS, GPSII, GPSIII, JMS, SBIRS, LTRS, AFSCN, and DMSP.
- Data sources include 7 program ISPs, 1 CDD, and 3 Architecture Design Documents (ADD).
- 360 DODAF views captured for the key programs (AEHF, CCSC-C, GPS, SBIRS, and AFSCN)

Assessment Methodology

- Includes DODAF architecture views per requirements of CJCSI 3170 and 6212.1F
- Programs included: AEHF, GBS, CCSC, EPS, WGS, GPSII, GPSIII, JMS, SBIRS, LTRS, AFSCN, and DMSP.
- Data sources include 7 program ISPs, 1 CDD, and 3 Architecture Design Documents (ADD).
- 360 DODAF views captured for the key programs (AEHF, CCSC-C, GPS, SBIRS, and AFSCN)
Common Ground System
Phase I Results & Findings

Infrastructure can be shared across satellite families (high efficiency, lower O&M)

Data Storage
- LOG Real Time OPS History
- Host Mission Data
- Space Vehicle Telemetry and Tracking History

Data Processing
- Custom Data Product Generation
- Mission Data Processing
- Space Vehicle Telemetry Processing

Data Sharing
- Pub/Sub Services
- Mission Data Posting
- Playback
- Reporting
- Orbital Analyses
- Timing
- Logging
- IA & Security

Shared Services/Orbital Visualization
- Ground Segment Config
- Status Monitoring
- Command Handling

Real-time Operations

User Driven Tasking
- Task Generation
- Course of Action Development and Selection
- Tasking Parsing

Planning and Scheduling
- Ground Segment Planning
- Bus OPS Planning
- Payload OPS Planning

Medium Service Reuse items can leverage best of breed applications from existing ground systems and add capability to support multiple satellite families

Architectural baseline generated by analyzing the SV-4, SV-5, and OV-5 documents from GPS, AEHF, AFSCN, and SBIRS. Twelve (12) DoDAF documents were analyzed in total (4 SV-4s, 4 SV-5s, 4 OV-5s) for the CGS study.
State of Technology Overview
Key Tenents Study

- NEPTUNE (Naval Research Laboratory)
- MMSOC – Multi-Mission Space Operations Center
- GMSEC – Goddard Mission Services Evolution Center
- AFSCN – Air Force Satellite Control Network
- JPSS – Joint Polar Space System
- FCS – Future Combat System
- NRO – National Reconnaissance Office
- JMS – JSpOC Mission Systems
- AOC-WS – Air Operations Center – Weapon System
- DISA-GIG, NCES Enterprise services
- LENS – LTRS Enterprise Net-Centric System
- IntelSat, UtilSat, SES - Commercial Ground Systems
- Integrated Operations Center (60th SW)
- JPL AMMOS Common Ground System (Deep Space)
- GSIN ISR mission data exposure (supporting SSA)
- MCS SBIRS Increment I consolidation
- GPS OCX Common Ground System
- CCS-C – Command and Control System – Consolidated (MILSATCOM)
- DCGS-A, DCGS-IC, DCGS-AF – Distributed Common Ground System
- STARS – Spacelift Telemetry Acquisition and Reporting System

20 Ground Systems reviewed as input to Key Tenents

- As part of the Phase I study, 20 existing Common Ground System (CGS) processing capabilities, their ground assets, and the ground equipment infrastructure were evaluated
- Identified the state of technology for CGS to meet the Net Ready KPP leveraging the GIG and using a Service Oriented Architecture (SOA)
- Results of the study recommends reusing the existing satellite CGS mission capability to embark on a Net-Centric Satellite Command and Control (C2) CGS
- Six (6) tenents, shown on the next slide, were identified based on the lessons learned from the evaluation of the 22 existing CGS
State of Technology Overview

Key Tenents Study

<table>
<thead>
<tr>
<th>CGS Key Tenents for Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Combine data processing infrastructure (i.e. Cloud type commodity infrastructure and middleware). Consolidate data storage, processing, data sharing across satellite programs. Separate instances geographically separate connected to GIG = resiliency.</td>
</tr>
<tr>
<td>2. Establish a thin client web browser interface (to the Cloud type Data Center) connected to the GIG. Supports resiliency and distributed operations. Assists with IA strategy.</td>
</tr>
<tr>
<td>3. Consolidate ownership and responsibility of shared and dedicated antennas/entry points (including DISA teleports) – connect to the GIG.</td>
</tr>
<tr>
<td>4. Reuse existing mission services from existing satellite ground systems (best of breed).</td>
</tr>
<tr>
<td>5. Expose data as close to the raw data source as possible (at closest data center). Expose in a net-centric format consistent with DoD guidance, including metadata.</td>
</tr>
<tr>
<td>6. Each satellite Program Office align with CGS vision by a) connect assets and infrastructure to the GIG, b) expose authoritative data sources (see #5), c) separate out existing applications (many proprietary) into best of breed ‘services’</td>
</tr>
</tbody>
</table>
Key lessons learned study identified five (5) major challenges:

- Culture
- Governance
- Mission Assurance
- CONOPs
- Technical

Highest Priority

Lowest Priority
State of Technology Overview

Key Challenge #1: Culture

<table>
<thead>
<tr>
<th>Challenge Area</th>
<th>Description of Challenge</th>
<th>Lessons Learned/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture</td>
<td>A single procurement for the entire CGS system with one RFP is high risk and in the past has not been successful</td>
<td>A more effective acquisition strategy is for the Government to take on the Integration role, own the CGS infrastructure and middleware; reuse existing ground system mission services and acquire by mission services for new capability needs. Consolidate common functions when reusing mission services (orbital analysis, data playback, timing, logging, etc)</td>
</tr>
<tr>
<td>Culture</td>
<td>Minimal use of autonomous satellite operations in the DoD. Fear of retribution with military operators from autonomous software bugs/mistakes.</td>
<td>Autonomy should be designed in to ground system functionality. During future CGS architecture planning, focus on building in autonomous operations similar to commercial systems (SES, IntelSat, UtilSat, JPL AMMOS). Re-evaluate satellite C2 CONOPS for operator responsibility with autonomous software.</td>
</tr>
</tbody>
</table>
State of Technology Overview

Key Challenge #1: Culture

<table>
<thead>
<tr>
<th>Challenge Area</th>
<th>Description of Challenge</th>
<th>Lessons Learned/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture</td>
<td>Historically ground systems are acquired by stove-piped program (SBIRS SPO, MILSATCOM SPO, GPS SPO, etc) with no central ground authority responsible for providing the requirements governance necessary to assure common ground architecture implementation.</td>
<td>Establish a central ground system organization to oversee the implementation of GCS responsible for oversight, governance and the integration of common architecture standards into the Program of Record (PORs).</td>
</tr>
<tr>
<td>Culture</td>
<td>Military operation personnel per shift based on historical checklists versus ‘right sized’</td>
<td>Leverage Flight examples of reduced proficiency for personnel (resulting in less shifts) based on CGS capabilities, budget cuts and current need. Evaluate ‘right sized’ satellite operations reducing satellite proficiency contacts, cutting personnel per current budget reality.</td>
</tr>
</tbody>
</table>
State of Technology Overview

Key Challenge #2: Governance

<table>
<thead>
<tr>
<th>Challenge Area</th>
<th>Description of Challenge</th>
<th>Lessons Learned/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governance</td>
<td>Lack of Governance during CGS development lifecycle results in numerous Configuration Management and mission priority conflicts</td>
<td>Establish a Governance body including Executive, Architecture, Development and Operations Working Groups to manage all Governance aspects.</td>
</tr>
<tr>
<td>Governance</td>
<td>Lack of understanding how to update mission service versions and shared service versions between organizations (test, accreditation, cost/benefit, etc) on a shared infrastructure</td>
<td>Leverage the Governance boards including Executive, Architecture, Development and Operations WGs to manage priorities of service updates and details.</td>
</tr>
</tbody>
</table>
State of Technology Overview

Key Challenge #3: Mission Assurance

<table>
<thead>
<tr>
<th>Challenge Area</th>
<th>Description of Challenge</th>
<th>Lessons Learned/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Assurance</td>
<td>The Cyber Risk (Information Assurance) approach and ownership for of a CGS is unknown.</td>
<td>Reuse recent ‘type’ accreditation IA approaches combined with Service Level Agreements with organizations. Establish one entity as the CGS owner/acquirer. Type Accredit data centers at each enclave with a secure remote connection (VPN-type) thin client provision for mission user screens. Leverage approved Cross Domain solutions.</td>
</tr>
</tbody>
</table>
State of Technology Overview

Key Challenge #4: CONOPs

<table>
<thead>
<tr>
<th>Challenge Area</th>
<th>Description of Challenge</th>
<th>Lessons Learned/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONOPS</td>
<td>Military leaders and organizations apprehensive to share/expose real-time satellite operations data outside of their mission domain area</td>
<td>Incentivize leaders and organization to share data, adhere to Net-Ready KPP. Implement the Integrated Network and Satellite Operations Center (IOE) at Schriever to enable data sharing at the Space Command and Control (C2) level.</td>
</tr>
<tr>
<td>CONOPS</td>
<td>Lack of resiliency in many of the current Space C2 ground systems. Current CGS within a program, within satellite families.</td>
<td>Implement a common infrastructure across satellite programs and families. Implement disaggregated processing data center infrastructure (Cloud) similar to Google/Amazon examples – including geographic separation within architecture. Reuse mission services from existing ground systems and combine infrastructures.</td>
</tr>
</tbody>
</table>
State of Technology Overview

Key Challenge #5: Technical

<table>
<thead>
<tr>
<th>Challenge Area</th>
<th>Description of Challenge</th>
<th>Lessons Learned/Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td>Lack of operational Satellite C2 Service Oriented Architecture (SOA) (state of technology)</td>
<td>Leverage proven SOA Infrastructure, Middleware and reusing existing Mission Applications from existing Satellite C2 CGS to combine existing/proven CGS technology with existing/proven SOA CGS.</td>
</tr>
<tr>
<td>Technical</td>
<td>Current CGS initiatives focusing on making interoperable data after being processed and through system outputs.</td>
<td>Expose data to a common infrastructure as close to the raw source as possible for an overall lower CGS transition cost. Converting data to open protocols by systems output (not close to data source) will continue the cycle of maintaining multiple duplicative systems (high O&M). Exposing telemetry data (engineering units) and other raw data sources is the best approach for consolidating duplicative systems, applications and with the overall lowest transition costs.</td>
</tr>
</tbody>
</table>
State of Technology Overview
Recommended Data Center Architecture Implementation

Leverage IC ITE Reference Implementation (RedDisk) & DCGS-Army for CGS reuse
Consistent with DoD Joint Integration Environment (JIE) Guidance
Study Conclusions

- Move toward services based open enterprise architectures is occurring across the USG community
 - Economies of scale – potential cost savings
 - New capabilities at little cost

- Issues to implementation are not technical
 - A common ground technology has been successfully used in operations for many years and prototyped, evaluated and demonstrated in an 50th SW relevant environment
 - There are many other DoD and commercial technologies (at a high Technology Readiness Level) that can be leveraged by CGS

- Considerations for long-term leadership support, organization and agile procurement/management will be critical for success regardless of what technology is chosen to implement an enterprise architecture
Contact Information

Dr. Michelle Watton Harper
Senior Lead Technologist

Booz Allen Hamilton Inc.
Suite 200
5220 Pacific Concourse Drive
Los Angeles, CA 90045
Tel (949) 280-2946
harper_michelle@bah.com

Booz Allen Hamilton Inc.
Suite 200
5220 Pacific Concourse Drive
Los Angeles, CA 90045
Tel (310) 297-2148
vanek_tom@bah.com

Tom Vanek
Senior Lead Technologist

Booz Allen Hamilton Inc.
Suite 200
5220 Pacific Concourse Drive
Los Angeles, CA 90045
Tel (310) 297-2148
vanek_tom@bah.com

Charles Reeves
Senior Lead Technologist

Booz Allen Hamilton Inc.
Suite 200
5220 Pacific Concourse Drive
Los Angeles, CA 90045
Tel (310) 297-5317
reeves_charles@bah.com