Session 9: Changing Paradigms and Challenges
Tools for Space Systems
Cyber Situational Awareness

Wayne A. Wheeler
The Aerospace Corporation

GSAW 2015, Los Angeles, CA, March 2015
Agenda

- Emerging cyber threats to space systems
- Defense-in-Depth shortfalls
- Tools for Cyber Situational Awareness
- Example Approaches
- Summary
Open Source Reported Space Cyber Incidents

The age of the space cyber attack is here

• **ROSAT**— satellite disabled (1998)
• **Landsat 7**— “cyber interference” (2008)
• **Terra EOS AM-1**— “cyber interference” (2008)
 – ”achieved all steps required to command the satellite”
• **IntelsatONE**— DDoS (distributed denial-of-service) attacks (2011)
Factors Driving Cyber Threats to Space Systems

• Space systems are distributed networks of COTS1, and can share vulnerabilities with any commercial infrastructure
 – Aging ground infrastructure can be less secure than current commercial systems (no remediation for emerging threats)
• “100% closed systems” assumptions for space systems are not realistic, in light of Advanced Persistent Threats
 – APTs - highly resourced and motivated attackers
 – Supply chain, FOSS2 or commercial software, applications software, upgrades, links to other systems, and insider threats are potential attack vectors
• Threats development has moved up from “hackers” to organized crime and resourced State actors
 – Computing power amplifies asymmetric power
 – Estimated 82,000 new malware discovered daily in 2013
• Potential adversaries are known to be developing (and are sometimes demonstrating) sophisticated cyber attack capabilities against space systems

1 Commercial-of-the-Shelf
2 Free-and-open-source software
The Advanced Persistent Threat (APT)

The highly resourced and motivated adversary

• The Cyber Threat is active and evolving
 – *Cyber attacks are ongoing and continuous as a means by which adversaries attempt to exfiltrate information, test system responses and identify exploitable attack surfaces*
 – *Space, ground, and user segments must be resilient to the persistent probing, penetration and exploitation attempts by adversaries throughout the stages of a space system life cycle*

• Space Architectures must be **cyber resilient** to all types of threats
 – *“Known” Cyber Threats*
 • Identified “in the wild” as a known vulnerability
 • Usually similar to previous malware
 – *“Unknown” Cyber Threats*
 • Only identified after exploit
 • Zero-day attacks
Tools for Cyber Situational Awareness and Response

It isn't that they can't see the solution. It is that they can't see the problem.

G.K. Chesterton
Cyber Threats Landscape

Known
Identified Vulnerabilities

- Available technologies
- Global industry response
- Best-practices
 - Defense-in-Depth
 - Network Segmentation
 - Layer 3 Firewalls
 - Aggressive Patch Management
 - Boundary Enforcement
 - IDPS
 - 7x24 Top-tier Security Ops Center
 - Current Software/Hardware

Unknown
Zero Day, APT

- Emerging technologies
- Industry struggling to respond
- Cyber Analytic Tools
 - Layer 7 Firewalls
 - SIEM
 - Virtualization Sandbox
 - Cyber Visualization
 - Auto respond systems
- Ineffective without development and Ops expertise
 - Significant costs for start-up Ops

Zero Day- Cyber exploit not previously seen
APT- Advanced Persistent Threat
DPDS- Intrusion Detection & Prevention
SIEM- Security Information & Event Management
An Arsenal to Counter 21st Century Cyber Threats

• “Defense-in-Depth” security architectures are necessary, but not sufficient
 – Need to assume that attackers can find a way inside (APTs)
• Cyber Situational Awareness is critical
 – Instrument computers and networks to report ongoing state and activity
 – Leverage advanced Cyber Analytics Tools to correlate and interpret vast amounts of available data
 – Ensure operator training and procedures to utilize available tools
• Enforce system state of “stacks” through automated tools
 – Leverage global knowledge base developing mitigations to emerging threats and vulnerabilities (i.e. patch management)
• Implement processes to continually review and enhance cyber security protections to space systems
 – Operating budgets need to allocate resources for continual enhancements
Cyber Analytic Tools for Advanced Threats

- Industry has developed various real-time cyber analytic tools to identify and respond to advanced threats.
- Instrumentation highlights patterns of a cyber attack – subtle changes in state on a number of systems can be correlated to facilitate early discovery of an attack.
- Data-Driven Security: emerging capabilities such as Big Data cyber analytics and cyber visualization may enable automated analysis and response to advanced threats.
Security Information & Event Management (SIEM)
Challenges to Implementing SIEM

• Custom SIEM log interfaces need to be built for legacy/unique systems
• SIEM outputs are only as good as the logs generated and the rules defined for the implementation
• Advanced tools do not negate the need for training and procedures
• SIEM tools need to be paired with incident response systems/procedures (I know we’re under cyber attack- so now what are we supposed to do?)
• SIEM itself can be compromised (e.g. insider attacks)
• Cloud providers may not provide logs needed for in-depth SIEM
“Sandbox Detonation” for Zero-day Attacks

- Inbound Content
- Pre-Filtering Intelligence
- Virtualization Sandbox
- Malicious Code Detonation
- Incident Response
- Alarms
- Visualization
- Reports

Is it Suspicious?

Is it Malicious?
Case Study: Target Data Breach

- Attackers gained access to the Target network via weak security at a Target vendor
- Except for the final data exfiltration, almost the entire attack took place within the Target corporate infrastructure
 - Target computers were turned into agents for the attackers
- Target never realized the attack on their own
 - Complete lack of cyber situational awareness
- Despite having installed advanced security systems, Target missed multiple opportunities to thwart the attack
 - Lack of skills to architect, deploy, and manage advanced cyber analytic tools
- To date, there has been no attribution (charges/arrests)
Summary

- The cyber threat to space systems is real and will continue to evolve with increasing capabilities for potential attackers.
- **Cyber Situational Awareness** is critical for all segments of a space system (space, ground networks, ops centers, user terminals).
 - Required to identify, mitigate, and attribute advanced cyber attacks.
- **Cyber Analytics Tools** can provide significant insight into cyber situational awareness.
 - Instrument the network
 - Implement analytics to support security team
 - Must develop (or contract for) expertise necessary to integrate and operate cyber analytic tools.
- Cyber Analytic solutions are evolving—resources must be provided for an “evergreen” refresh approach to cyber security.
Questions?