Will XTCE work for your organization? It will for us!
Infusion of XTCE to NASA missions

Michela Muñoz Fernández1, George Rinker1, Marti DeMore1
Dan Smith2, Ron Jones3, Kevin Rice3

1NASA Jet Propulsion Laboratory, California Institute of Technology
2NASA Goddard Space Flight Center, 3ASRC

March 4, 2015

© 2015 California Institute of Technology. Government sponsorship acknowledged. Published by The Aerospace Corporation with permission.
NASA’s XTCE effort

• Like you, NASA’s Jet Propulsion Laboratory has investigated ways to share and interpret information across centers and agencies.
 • More consistency across products and with commercial software is required.

• XML Telemetric & Command Exchange (XTCE) standard has been considered for telemetry and command information:
 • Needed: perform an examination of its applicability to the JPL Advanced Multi-Mission Operations System (AMMOS) to meet our needs

• We have recently completed processes to allow us to assess the suitability of XTCE to support our missions.
 • Challenge – To rapidly integrate and test command and telemetry metadata from one agency to another agency’s satellite to reduce schedule and cost
 • Solution – We found we can use a common database exchange (XTCE) so integration and test is familiar and straightforward
What is XTCE?

XML Telemetric and Command Exchange (XTCE)

- Dictionary exchange standard oriented towards mission operations which describes properties including:
 - Commands, arguments, and other aspects of commanding
 - Telemetry, mnemonics, limits and calibrators
 - Packaging: such as packets or minor frames
 - Derivations/Pseudo-telemetry
 - And so forth

- Formalized as both a CCSDS and Object Management Group (OMG) Standard

- GovSat subset published by OMG last year
 - Hosted on both OMG and CCSDS Websites

- Adopted by several civilian space agencies around the world
 - And by several US DoD groups, possibly others
JPL’s XTCE Method

• We started by quantifying XTCE’s ability to capture the telemetry and command definitions of our current missions
 • The result was a mapping and a percentage of it “in XTCE”.
• Next we carefully crafted extensions into XTCE to cover the missing percentage.
 • Goals:
 • Don’t break existing syntax
 • Have the extensions clearly appear as such in the XML files (for analysis)
 • Result: XTCE_AMMOS
• Thirdly, build tools and use real mission databases to test XTCE_AMMOS:
 • Goal: perform **LOSSLESS** round-trip conversion from original database to XTCE w/extensions
 • Juno and Odyssey were chosen
JPL XTCE-Juno mission
The Juno spacecraft

Juno spacecraft at LMSS. Image credit: NASA/JPL-Caltech/LMSS.
JPL, JIRAM, and LM teams during instrument integration.

JPL, JIRAM, and LM teams during integration. Image credit: NASA/JPL-Caltech/LMSS.
Evaluated XTCE representation of AMMOS Dictionaries

Purpose: Evaluate XTCE representation of AMMOS Dictionaries

- Mapped 11 AMMOS Dictionaries to XTCE
 - Common, Command, Telemetry, APID, EVR, Generic Decom Map, Generic Decom Map by APID, Alarm, Alarm Notification, EVR Notification, Transfer Frame

- Characterized the mapping (%)
 - Identified consistencies and gaps
 - Recommended solution for items that did not map (separate schema, ancillary)
XTCE Specification to AMMOS Dictionaries Flow

- Full XTCE 1.1 Spec.
 - Analyzed general mission needs
 - Too bulky, no field limitations

- GovSat Spec.
 - Analyzed AMMOS needs
 - Good general standard, does not cover all AMMOS needs

- GovSat Spec. with AMMOS Extensions
 - Measured compliance to GovSat and to Extensions
 - AMMOS add-ons extend capability, meet all AMMOS req.

- AMMOS’s 11 Dictionaries
 - Populated with JPL mission definitions
 - Can convert either direction between XTCE and AMMOS dictionaries

- Operational Software ingests AMMOS Dictionaries
 - AMMOS Software

With release of XTCE 1.2 more items covered by standard and less by extensions

- Must show 100% compliance with extension; want to move towards very high compliance to GovSat.
MMD to XTCE Conversion Round-Trip

Key:
MMD = Multi-Mission Dictionary

Goal - demonstrate “Round Trip” of MMD conversion to XTCE and back without loss of content
JPL’s XTCE Method

• Then we did a metric analysis to see how well we did:

 • We wanted to know how much of XTCE we used vs extensions per database

 • We followed a rigorous process to obtain the metrics
Metrics from MMD to XTCE Conversion

<table>
<thead>
<tr>
<th>Input</th>
<th>Odyssey Mission Dictionaries</th>
<th>Juno Mission Channel Dictionaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Apid (apid table)</td>
<td>- Apid (apid table)</td>
<td></td>
</tr>
<tr>
<td>- Channel (telemetry)</td>
<td>- Channel (telemetry)</td>
<td></td>
</tr>
<tr>
<td>- Command</td>
<td>- Generic decom by apid</td>
<td></td>
</tr>
<tr>
<td>- Generic decom by apid</td>
<td>- decom maps (13 packet files)</td>
<td></td>
</tr>
<tr>
<td>- decom map (1 packet file)</td>
<td>- Transfer frame</td>
<td></td>
</tr>
<tr>
<td>- Transfer frame (front end)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- alarms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Evr (event)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Events</th>
<th>DataSource</th>
<th>DecomMap</th>
<th>DecomMapApid</th>
<th>XferFrame</th>
<th>Alarms</th>
<th>Fill/Repeat</th>
<th>CmdArg AbsTime</th>
<th>CmdArg EnumRange</th>
<th>MaxLen Strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odyssey Mission Dictionaries</td>
<td>225497</td>
<td>5662</td>
<td>208</td>
<td>168</td>
<td>25</td>
<td>5279</td>
<td>190</td>
<td>10</td>
<td>19559</td>
<td>306</td>
</tr>
<tr>
<td>Juno Mission Channel Dictionaries</td>
<td>23682</td>
<td>8707</td>
<td>:904</td>
<td>:136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>XTCE 1.1</th>
<th>XTCE 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTCE+JPL extensions</td>
<td>714,701</td>
<td>100.00%</td>
</tr>
<tr>
<td>XTCE</td>
<td>356,166</td>
<td>49.83%</td>
</tr>
<tr>
<td>JPL Extensions</td>
<td>358,535</td>
<td>50.17%</td>
</tr>
</tbody>
</table>

High due to number of Events in MMD File.

- XTCE 1.1 does NOT handle events
- XTCE 1.2 WILL handle events

XTCE AMMOS completely supports the Odyssey MMDs and Juno Channel Dictionary
JPL’s XTCE Method

- Brought JPL extensions to OMG/CCSDS standard community:
 - Discussed for inclusion into XTCE 1.2
 - Some were accepted, some deferred and some were rejected
 - Face-To-Face meetings with the OMG Space Domain Task Force
 - Final OMG meeting in Austin solidified all issues relevant to XTCE 1.2 and JPL
 - By participating our voice was heard, many of the extensions made it in
 - But a few will still be needed

- XTCE 1.2 soon to be published
JPL Items in XTCE 1.2 OMG Summary

• OMG accepted many suggested enhancements to XTCE in version 1.2, but chose to defer or reject some, which must be accommodated in JPL extensions to support AMMOS

• Update at the last OMG meeting:

22 items in original JPL files not addressed in XTCE, change requests were then submitted

- 19 Accepted
- 1 Rejected
- 2 Deferred
JPL Infusion Tasks

• Finally we moved to infusion at JPL:

 • FSW Core, Instrument Software, Ground Software, and Project System Engineering

 • Identified and worked with additional NASA missions and interfaces to incorporate standard

 • XTCE demonstration with the FSW Core and Europa Clipper mission

 • Potentially others, such as Mars 2020, INSPIRE CubeSat, JSC

 • Support implementation and use of standard across other NASA centers
JPL collaboration with ESA
TGO Electra Instrument

• The Trace Gas Orbiter (TGO) will be a Mars telecommunications orbiter and atmospheric gas analyzer mission (launch 2016)

• It will deliver the ExoMars EDM lander and then proceed to map the sources of methane on Mars and select a landing site of the ExoMars Rover (launch 2018)

• NASA will provide an Electra telecommunications relay and navigation instrument to assure communications between probes and rovers on the surface of Mars and controllers on Earth (till 2022)
Conclusions

• XTCE can work for you -- Gaps can be handled 100% is critical: 98% is not good enough!
 • It is important to assess compliance between your existing systems and XTCE
 • as suggested by updates to the standard
 • as local extensions
• Benefits may come in several ways
 • Easier coordination across different existing or new tools
 • Simplified data exchange with external partners
 • More efficient operations
 • Reduce maintenance costs
 • Reduces variation among dictionaries (for different missions)
• Import XTCE from others: Big Savings
 • definitions of instruments
 • or even entire satellites developed by others in XTCE,
 • and automatically create the corresponding AMMOS dictionaries.

• Standards participation works!
Future plans

• Continue infusion process with NASA and ESA missions:
 • Collaboration towards a joint international standard (NASA/ESA tailoring)

• Or Use XTCE as AMMOS native dictionary:
 • Some up front cost, but would make sharing even easier/cheaper
Acknowledgments

- The work described in this presentation was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

- References:
 - OMG XTCE: http://www.omg.org/space/xtce/
 - Juno mission: http://missionjuno.swri.edu/
 - ESA TGO: http://exploration.esa.int/mars/46475-trace-gas-orbiter/
Questions?

Dr. Michela Muñoz Fernández
Information Architecture Standards Task Manager
Michela.Munoz.Fernandez@jpl.nasa.gov

JPL
National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
<table>
<thead>
<tr>
<th>Issue #</th>
<th>Title</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>19367</td>
<td>Bit Extract</td>
<td>Supported (XTCE 1.2)</td>
</tr>
<tr>
<td>19368</td>
<td>Alarm count in and out</td>
<td>Accept</td>
</tr>
<tr>
<td>19369</td>
<td>Re-architect XTCE alarm model.</td>
<td>Partially Accept</td>
</tr>
<tr>
<td>19371</td>
<td>Mask Alarm needed</td>
<td>Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19372</td>
<td>Digital Alarm needed</td>
<td>Supported (XTCE 1.2)</td>
</tr>
<tr>
<td>19373</td>
<td>Change alarm</td>
<td>Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19374</td>
<td>Combination alarm</td>
<td>Defer</td>
</tr>
<tr>
<td>19375</td>
<td>Off Alarm</td>
<td>Partially Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19376</td>
<td>Elevate annotation specifying time string formats to an attribute</td>
<td>Accepted</td>
</tr>
<tr>
<td>19378</td>
<td>Expand Telemetry data source</td>
<td>Accepted</td>
</tr>
<tr>
<td>19379</td>
<td>Raw units</td>
<td>Defer</td>
</tr>
<tr>
<td>19380</td>
<td>Title</td>
<td>Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19381</td>
<td>Categorization (Label Set)</td>
<td>Duplicate</td>
</tr>
<tr>
<td>19382</td>
<td>Variable in decom map</td>
<td>Partially Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19383</td>
<td>width semantics</td>
<td>Partially Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19384</td>
<td>Gap spacer in container</td>
<td>Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19385</td>
<td>Switch in container</td>
<td>Partially Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19386</td>
<td>Front-end Processing encodings</td>
<td>Reject - Possible New SpaceDTF Standard Specification</td>
</tr>
<tr>
<td>19387</td>
<td>Identifying List(s) -- APID to decom map</td>
<td>Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19388</td>
<td>Events not supported</td>
<td>Accept</td>
</tr>
<tr>
<td>19403</td>
<td>Fill arguments</td>
<td>Supported (XTCE 1.1, 1.2)</td>
</tr>
<tr>
<td>19404</td>
<td>Repeat arguments</td>
<td>Supported (XTCE 1.2)</td>
</tr>
</tbody>
</table>