TRUE OPERATIONS AUTOMATION: FROM A GEO FLEET TO A SINGLE LEO SATELLITE

© GMV, 2016 Property of GMV
All rights reserved
Published by The Aerospace Corporation with permission
CHALLENGE

- Satellite operations are simple and can be largely anticipated
- Humans needed (even if subsystems automated)
- Large fleet, large team
- Tedious tasks
VISION

- End-to-end unattended automation
- Subsystems orchestrated

- One (1) supervisor
- Keep the manual mode!
SOLUTION

GSAW 2016 - True Operations Automation: from a GEO Fleet to a Single LEO Satellite
March 2016 | Page 4 © 2015 by GMV. Published by The Aerospace Corporation with permission
The subsystems kernels shall
- Be automatable
- Expose an automation API

The automation components shall
- Exploit the kernel automation API
- Be controllable
- Expose a control API to be used by the orchestrator
PROCEDURES

- Assisted mode
 - Rewrite or convert manufacturer FOPs to express them in the subsystem automation language

- Unattended mode
 - Remove user interaction
 - Pre- and post-checks
 - Support the switch from unattended to assisted mode
 - Provide feedback upon non-nominal paths being taken
 - Handle inputs/outputs via central data repository

Updates required!
The orchestrator may take a long-term plan from a MPS and allows short-term plan approval.

API for external systems to add unplanned activities (such as payload reconfiguration).

Activities are shown in a Gantt display.

Resource conflicts are detected and reported.

Orchestration includes:
- Chain of activities for different subsystems
- Dependencies and data exchange
- Scripted activities for dynamic planning
ORCHESTRATOR: DYNAMIC PLANNING

Planning
- East/west manoeuvre 2-4 days after south one
- South manoeuvre planning activity: internal flyplan activity that calls FDS for the computation of the manoeuvre details...

Execution
1. **T1**
 - Ranging campaign before south manoeuvre
 - The ranging campaign gets executed

2. **T2**
 - South manoeuvre every 14 days
 - East/west manoeuvre 2-4 days after south one

...and schedules the manoeuvre execution at the precise time and for the precise duration...
GLOBAL AWARENESS

- Master Fleet Terminal (MFT)

 Operations orchestrator (**flyplan**)

 Infrastructure monitoring (**NMS**)

- Centralized logging (**centralLog**)

- Alarms (**fleet dashboard**)

- Monitoring of plan execution
- Notify non-nominal situations
 - Drill-down to offending issue
 - Interact with the plan (stop/resume, shift...)
 - MCS workstations ready for intervention (assisted mode)
GLOBAL AWARENESS: INFRASTRUCTURE MONITORING

- NMS
 - Independent hardware and software monitoring
 - Alarm routing to the centralized logging module (next slide)
 - Multiple views (tactical, network, processes...)
GLOBAL AWARENESS: CENTRALIZED LOGGING

- *centralLog*
 - Selected messages from all subsystems
 - Only application with audible feedback
 - Error and warning messages acknowledge
 - Live and retrieval modes
GLOBAL AWARENESS: ALARMS (OUT OF LIMITS)

- fleet dashboard
 - Current list of satellite alarms (out of limits, status of TM link)
 - No sound
 - No acknowledge
 - Live mode only

<table>
<thead>
<tr>
<th>Sev</th>
<th>Update time</th>
<th>System</th>
<th>Domain</th>
<th>Type</th>
<th>Element</th>
<th>Value</th>
<th>Expected value</th>
<th>Initial Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12/05/2015 14:05:10.021</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC53192</td>
<td>-60.000 Nms</td>
<td>[0, 3500]</td>
<td>12/05/2015 13:16:20.488</td>
<td>S/C Nominal Mom (Pitch)</td>
</tr>
<tr>
<td>A</td>
<td>12/05/2015 14:03:38.092</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC53192</td>
<td>DIS</td>
<td>[0, 3500]</td>
<td>12/05/2015 13:15:59.230</td>
<td>S/C Nominal Mom (Pitch)</td>
</tr>
<tr>
<td>A</td>
<td>12/05/2015 14:03:30.308</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC53192</td>
<td>DIS</td>
<td>[0, 3500]</td>
<td>12/05/2015 13:15:58.362</td>
<td>HTE EMA/DIS</td>
</tr>
<tr>
<td>A</td>
<td>12/05/2015 14:02:59.733</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC64000</td>
<td>50 °C</td>
<td>[-5, 3500]</td>
<td>12/05/2015 13:15:55.053</td>
<td>S/C Nominal Mom (Pitch)</td>
</tr>
<tr>
<td>X</td>
<td>12/05/2015 14:02:56.517</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC53192</td>
<td>DIS</td>
<td><=DIS</td>
<td>12/05/2015 13:15:49.517</td>
<td>3AA/QEA Exit Counter</td>
</tr>
<tr>
<td>A</td>
<td>12/05/2015 14:02:26.302</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC53192</td>
<td>DIS</td>
<td><=DIS</td>
<td>12/05/2015 13:15:58.421</td>
<td>3AA/QEA Exit Counter</td>
</tr>
<tr>
<td>A</td>
<td>12/05/2015 14:02:05.078</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC64000</td>
<td>3600.000 s</td>
<td><=DIS</td>
<td>12/05/2015 13:15:51.325</td>
<td>S/C Nominal Mom (Pitch)</td>
</tr>
<tr>
<td>A</td>
<td>12/05/2015 14:01:41.441</td>
<td>RTS</td>
<td>AB01</td>
<td>OOL</td>
<td>AC53192</td>
<td>DIS</td>
<td>[-5, 3500]</td>
<td>12/05/2015 13:15:53.256</td>
<td>3AA/QEA Exit Counter</td>
</tr>
<tr>
<td>A</td>
<td>12/05/2015 14:01:27.388</td>
<td>RTS</td>
<td>AB03</td>
<td>OOL</td>
<td>AC64000</td>
<td>DIS</td>
<td>[-5, 3500]</td>
<td>12/05/2015 13:15:30.855</td>
<td>HTE EMA/DIS</td>
</tr>
</tbody>
</table>
APPLICATION CASES

- Trade-offs performed by our customers have concluded that they will apply fully-automated operations

- GMV’s full automation solution has been adopted in two scenarios:
 - (GEO) Fleets
 - Low cost mission: CHEOPS CHaracterising ExOPlanet Satellite
 - The CHEOPS mission is a partnership between Switzerland and ESA's Science Programme (first S-class mission from ESA)
 - Participation from a number of European countries Austria, Belgium, France, Germany, Hungary, Italy, Portugal, Spain, Sweden, and the United Kingdom
 - http://sci.esa.int/cheops/
 - http://cheops.unibe.ch/
TELECOM FLEET OPERATIONS

- 2-30 Geostationary satellites.
- +1 spacecraft every 1-4 years.
- Few routine operations per week.
- Operations involve FDS (comput.), M&C (ground) and MCS (sat).
- Spacecraft is always visible → MCS in the operations loop
- Controllers team cannot grow linearly → Need to automate
LOW COST MISSION OPERATIONS

- Relatively simple routine activities.
- Limited number of interfaces within ground systems and well defined and fixed processes (in routine)
- Operations involve FDS, G/S and MCS
- Unmanned downlink passes
- Manned uplink passes for monitoring the automation system
- Heavy budget constraints → need to automate operations + need of simple/reused systems
GEO FLEET CASE

- MFT: Four wall-mounted 55” displays plus two monitors
- flyplan, new fleet sequences
- Thales’ SMAC, flyplan interface
- GMV’s hifly and autofocus
- Airbus’ PIL procedures → SPELL with SES’ PIL2SPELL translator
- Unattended mode: a few services added to hifly & SPELL
- GMV’s focusgeo and autofocus
- New SOL procedures
LOW-COST MISSION

- **flyplan**, new sequences
- MCS based on ESA’s SCOS-2000
- MCS Automation: thin layer based on simple python scripts (basic requirements, no assisted mode)
- Relatively simple operations: - pass-independent, and - pre, during, post-pass activities
- GMV’s **focusgeo** and **autofocus**
- New SOL procedures
LESSONS LEARNT

- Manual → assisted automation is tough, → unattended tougher
- End user involvement is always important, here critical
- Unattended operations
 - No human will check your thruster firings: extensive data validation and integrity
 - When something goes wrong, tools and information shall be available
 - Put practices in place for keeping the operational knowledge
- Technical corner:

“A robot may not harm humanity, or, by inaction, allow humanity to come to harm.”
— The Zeroth Law, Isaac Asimov
Thank you

Enrique Rivero
Satellite and Mission Control
Email: erivero@gmv.com
www.gmv.com