• CCS-C History & Overview
• CACE Overview
 – Architecture
 – Features
 – DevOps
• Lessons Learned
• Supporting Future Evolution
• Summary
CCS-C History & Overview

DSCS-III Milstar WGS AEHF

Operational SOC x4

* WGS FDS is a CLIN 4 deliverable.
CACE Overview

- **CCS-C Assurance and Capacity Enhancement**

- Comprehensive architecture upgrade to CCS-C
 - *Upgrade*, not a new acquisition
 - constrains scope
 - High-level Requirements
 - Improve cybersecurity
 - Ensure long-term capacity for WGS, DSCS, Milstar, AEHF
 - Reduce physical system footprint
 - Streamline system sustainment

Deliver Change Without Disruption
- Server & Client apps moved to VMs
- Thin network-boot endpoints
- Common services across system modes
- Preserves unique system interfaces
- Smaller sustained footprint
CACE Modes

Audit Mode
* Review audit logs for all modes

Operations Mode
* Live Contacts
* Simulated Contacts
* WGS GSCCE Contacts
* Mission Planning
* Orbit Analysis
* Analysis & Trending

Exercise Mode
* Live Contacts
* Simulated Contacts
* WGS GSCCE Contacts
* Mission Planning
* Orbit Analysis
* Analysis & Trending

Verification Mode
* Live Contacts
* Simulated Contacts
* WGS GSCCE Contacts
* Mission Planning
* Orbit Analysis
* Analysis & Trending

Legend
Promotion Activity
Mode Independent
Operations
Exercise
Verification
Audit
CACE Features

- Enhanced scalability
 - Physical hardware no longer constrains operational capability
 - System easily expandable to support additional AEHF or WGS vehicles or other new families (IOE concept)

- Reduced operational downtime
 - Installs/upgrades take less than 30 min
 - Virtualization improves CM by easing System Administration

- Improved operator experience
 - WGS fleet-level status display eliminates operator confusion and allows for reductions in operations staffing
 - Consolidated workstation image eliminates differences in UI at user endpoints
 - Single operational domain eliminates multiple login and manual data transfers between workstations
 - More powerful components and technology improve system responsiveness and data availability
 - Fully supports ongoing squadron automation efforts
CACE Features (cont’d)

• Future capable
 – KS-252 will support future cryptographic algorithms
 – System positioned for additional future interfaces – SIPRNET, NIPRNET, AFSCN over TCP/IP
 – Enables and simplifies transition to future enterprise architecture
 – Aligns capability with trends in commercial satellite operations

• Improved system cybersecurity posture
 – HBSS, DMZ, OOB network management, and CDS addresses several longstanding security deficiencies with current architecture
 – Positions system to interface into future multi-security level enterprise ground service
• CACE development utilizes tailored DevOps software development method
 – a portmanteau of “development” and “operations”
 – stresses communication, collaboration, integration, automation and measurement of cooperation between software developers and other information-technology (IT) professionals

• Recognizes the intersection of software development and IT operations to enable rapid fielding

• Continuous development and automated test

• Enables repeatable and controlled installation across multiple sites and modes
CACE Lessons Learned

• Major architecture evolution on operational system isn’t easy
 – SE 101 – need stable requirements before design!
 – When that fails, need graceful in-process change management
 – Focused, independent upgrades in parallel can introduce change more quickly

• Power of DevOps model hindered by traditional sequential development process in Gov’t programs
 – “Punctuated equilibrium” achieved within sequential DoD acquisition process
 – Wider benefits will require paradigm changes in gov’t SW PM

• Always keep future system evolution in mind
 – Virtualization of system components enables evolution toward service bus architecture
 – Enables wider set of SATOPS paradigms for MILSATCOM
 • Secure remote operations
 • Full TT&C-as-a-Service (TaaS)

Affordable, achievable, relevant architecture enhancement
Summary

• Original CCS-C system architecture was developed with the future in mind
 – Enterprise approach – no stovepipes
 – Common tools and services following successful commercial model

• CACE upgrade implements latest technology to bring MILSATCOM Enterprise C2 into 21st century
 – Virtualized server and client applications
 – Enhanced cybersecurity controls
 – Streamlined maintenance and sustainment

• CACE positions CCS-C for future architectural and operational paradigms
 – Enterprise Ground Services
 – Commercial TT&C-as-a-Service (TaaS)