

COSYSMO 3.0: Cost Estimation of Systems Engineering in a Context of Rapid Changes

Jim Alstad USC Center for Systems and Software Engineering

Ground Systems Architecture Workshop March 2, 2016

Jim Alstad*

310/344-0894

jalstad@usc.edu

COSYSMO 3.0 Objectives

Context:

- Current and future trends create challenges for full-system cost estimation of satellite systems
 - Emergent requirements, rapid change, net-centric systems of systems, COTS, clouds, apps, widgets, high assurance with agility, multi-mission systems
- Current development practices can minimize cost of one phase, such as development, while raising ground station cost
- COSYSMO 3.0 is being developed to mitigate this situation by supporting accurate estimates of systems engineering costs, with benefits including:
 - Allowing thoughtful system-level systems engineering during development, which can result in, for example, choosing new technologies that reduce ground station cost
 - Allowing thoughtful systems engineering of ground stations to support life-cycle flexibility

Acknowledgements

- 1. The development of COSYSMO 3.0 has benefited greatly from GSAW Working Groups held in 2014 & 2015
- 2. This presentation was adapted from one with these authors:

Jim Alstad

Dr Barry W Boehm USC Center for Systems and Software Engineering

Dr Jo Ann Lane

Mr Garry Roedler Lockheed Martin

Dr Gan Wang BAE Systems

Ms Marilee Wheaton The Aerospace Corporation

Agenda

Agenda:

- History of COSYSMO 3.0
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Summary

Legend:

Model has been calibrated with historical project data and expert (Delphi) data Model is derived from COCOMO II Model has been calibrated with expert (Delphi) data

History of COSYSMO Models

COSYSMO 3.0 Directions

Incorporate and harmonize existing COSYSMO model research and experience for estimating systems engineering effort:

- Several factors affecting the COSYSMO cost model have been shown to be valuable in increasing estimation accuracy (terminology from [1]):
 - Reuse (partial model—Development With Reuse) [3]
 - Reuse (with Development For Reuse) [1]
 - Requirements volatility (RV) [4]

The rating scales for these could be integrated into a comprehensive COSYSMO model.

Enhancement planned for inclusion:

- System-of-system considerations are hypothesized to affect system engineering costs:
 - 03/01— Interoperability considerations [6]

COSYSMO 3.0 Directions Part 2

Enhancements under discussion:

 Explore a model for total development cost based primarily on the COSYSMO parameters (following work led by Reggie Cole of Lockheed Martin [17, 7])

Agenda

Agenda:

- The motivation for COSYSMO 3.0
- History of COSYSMO 3.0

- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0
- Summary

COSYSMO 3.0 op-Level Model

Top-Level Model
$$PH = A \cdot (AdjSize)^{E} \cdot \prod_{j=1}^{15} EM_{j}$$

Elements of the COSYSMO 3.0 model:

- Calibration parameter A
- Adjusted Size model
 - eReq submodel, where
 4 products contribute
 to size
 - Reuse submodel

- Exponent (E) model
 - Accounts for diseconomy of scale
 - Constant and 3 scale factors
- Effort multipliers EM
 - 15 cost drivers

Harmonized COSYSMO 3.0 Size Model

$$AdjSize_{C3} = \sum_{SizeDrivers}$$

 $eReq(Type(SD), Difficulty(SD)) \times$

 $PartialDevFactor(AL_{Start}(SD), AL_{End}(SD), RType(SD))$

- SizeDriver is one of the system engineering products that determines size in the COSYSMO family (per [2]). Any product of these types is included:
 - System requirement
 - System interface
 - System algorithm
 - Operational scenario
- There are two submodels:
 - Equivalent nominal requirements ("eReq")
 - Raw size
 - Partial development
 - Adjusts size for reuse

Size Model – eReq Submodel

- The eReq submodel is unchanged from [2].
- The submodel computes the size of a SizeDriver, in units of eReq ("equivalent nominal requirements")
- Each SizeDriver is evaluated as being easy, nominal, or difficult.
- The following table contains conversion factors for the conversion of a SizeDriver to a number of eReq:

Size Driver Type	Easy	Nominal	Difficult
System Requirement	0.5	1.0	4.5
System Interface	1.9	3.9	9.0
System Algorithm	2.0	3.9	10.0
Operational Scenario	6.4	13.8	26.1

How Reuse Is Addressed

Reuse has two aspects [1]:

- Development with reuse (DWR): previously developed artifacts are reused on the current project
 - Addressed completely by the DWR partial development model
- Development for reuse (DFR): the current project is creating artifacts to be reused on other projects
 - One aspect of DFR development is that DFR costs more than ordinary development
 - Addressed by the DFR cost driver (below)
 - Another aspect of DFR is that the artifacts may be only partially completed, as during an IR&D project
 - Addressed by the DFR partial development model

Center for Systems and Software Engineering

Size Model -

Partial Development Submodel

- (Concepts here are simplified a little)
- The basic DWR concept:
 - If a reused SizeDriver is being brought in, that saves effort, and so we adjust the size by multiplying the raw size by a PartialDevFactor less than 1.
 - The value of PartialDevFactor is based on the maturity of the reused SizeDriver, and is looked up in a table [24].
 - How fully developed was the SizeDriver?
 - If there is no reuse for this SizeDriver, then PartialDevFactor =
 1 (no adjustment).

		Design	Design Im-	Adapted for	Adopted for	
DWR Activity Level:	New	Modified	plemented	Integration	Integration	Managed
DWR % of full-project cost:	100.00%	85.59%	71.18%	58.80%	39.75%	22.52%

- The basic development-for-reuse (DFR) concept is analogous:
 - A product to be reused may be not be taken through the full development cycle (e.g., an IR&D project)

		Conceptualized		Designed	Constructed		Validated
03	DFR Activity Level:	for Reuse	N/A	for Reuse	for Reuse	N/A	for Reuse
	DFR % of full-project cost	32.92%		54.91%	81.27%		96.79%

COSYSMO 3.0

Exponent Model

Exponent model is expanded from Peña [4, 9]

$$E = E_{COSYSMO1}$$

$$+SF_{ROR}+SF_{PC}+SF_{RV}$$

Where:

- $E_{COSYSMO1} = 1.06$ [2]
- SF = scale factor
- ROR = Risk/Opportunity Resolution
- PC = Process Capability
- RV = Requirements Volatility

The effect of a large exponent is more pronounced on bigger projects

Harmonized COSYSMO 3.0 Cost Driver Model

Here are the 15 cost drivers:

Driver Name	Data Item	
CONOPS & requirements understanding	Subjective assessment of the CONOPS & the system requirements	
Architecture understanding	Subjective assessment of the system architecture	
Stakeholder team cohesion	Subjective assessment of all stakeholders	
Level of service requirements	Subjective difficulty of satisfying the key performance parameters	
Technology risk	Maturity, readiness, and obsolescence of technology	
# of Recursive levels in the design	Number of applicable levels of the Work Breakdown Structure	
Development for reuse	Is this project developing artifacts for later reuse?	
# and Diversity of installations/platforms	Sites, installations, operating environment, and diverse platforms	
Migration complexity	Influence of legacy system (if applicable)	
Interoperability	Degree to which this system has to interoperate with others	
Personnel/team capability	Subjective assessment of the team's intellectual capability	
Process capability	CMMI level or equivalent rating	
Personnel experience/continuity	Subjective assessment of staff consistency	
Multisite coordination	Location of stakeholders and coordination barriers	
Tool support	Subjective assessment of SE tools	

Harmonized COSYSMO 3.0 Cost Driver Impacts

Agenda

Agenda:

- The motivation for COSYSMO 3.0
- History of COSYSMO 3.0
- Overview of the content of the COSYSMO 3.0 estimating model

- System-of-systems estimating: interoperability in COSYSMO 3.0
- Summary

System-of-Systems and Interoperability

- Suppose that SE work is being done on a system that is a constituent system in a system-of-systems. How is that context manifested in the SE project?
 - Answer: As interoperability requirements
 - Interoperability: The ability of a system to work with another system or group of systems.
- COSYSMO 3.0 includes interoperability as an influence on cost

COSYSMO 3.0 Interoperability Model

- Lane & Valerdi [6] propose that interoperability be considered a cost influence in the COSYSMO family
- Propose this influence could be manifested in two ways:
 - Method 1: Add a new cost driver (covered there)
 - Method 2: Adjust the easy/medium/difficult rating scale for system interfaces (part of the Size model)
- The working COSYSMO 3.0 includes both methods; only one would be retained in final COSYSMO 3.0.

Size Model -

Adjustment for Interoperability

Adjustment for interoperability (Method 2):

 [6] proposes (in its Table 3) that the table that defines the easy/medium/hard rating scale for a system interface (from [2]) be adjusted by adding a new row (the last row in this table):

Easy	Medium	Difficult	
Simple messages and protocols	Moderate communication complexity	Complex protocol(s)	
Uncoupled	Loosely coupled	Tightly coupled	
Strong consensus among stakeholders	Moderate consensus among stakeholders	Low consensus among stakeholders	
Well behaved	Predictable behavior	Emergent behavior	
Domain or enterprise standards employed	Functional standards employed	Isolated or connected systems with few or no standards	

Agenda

Agenda:

- The motivation for COSYSMO 3.0
- History of COSYSMO 3.0
- Overview of the content of the COSYSMO 3.0 estimating model
- System-of-systems estimating: interoperability in COSYSMO 3.0

Summary

Summary

- COSYSMO 3.0 will provide independent estimates of the cost of thorough systems engineering required based on project parameters
 - Thereby assisting in facing the challenge of the rapid rate of change

Bibliography (1/4)

- 1. "A Generalized Systems Engineering Reuse Framework and its Cost Estimating Relationship", Gan Wang, Garry J Roedler, Mauricio Pena, and Ricardo Valerdi, INCOSE 2014.
- 2. "The Constructive Systems Engineering Cost Model (COSYSMO)", Ricardo Valerdi (PhD Dissertation), 2005.
- 3. "Estimating Systems Engineering Reuse with the Constructive Systems Engineering Cost Model (COSYSMO 2.0)", Jared Fortune (PhD Dissertation), 2009.
- 4. "Quantifying the Impact of Requirements Volatility on Systems Engineering Effort", Mauricio Pena (PhD Dissertation), 2012.
- 5. "Life Cycle Cost Modeling and Risk Assessment for 21st Century Enterprises", Barry Boehm, Jo Ann Lane, Supannika Koolmanojwong, Richard Turner (presentation), April 29, 2014.
- 6. "System Interoperability Influence on System of Systems Engineering Effort", Jo Ann Lane, Ricardo Valerdi, CSER 2011.
- 7. "COSYSMO Extension as a Proxy Systems Cost Estimation" (presentation), Reggie Cole, Garry Roedler, October 23, 2013.

Bibliography (2/4)

- 8. "COSATMO: Developing Next-Generation Full-Coverage Cost Models" (presentation), Jim Alstad, USC CSSE Annual Research Review, April 29, 2014.
- 9. "Quantifying the Impact of Requirements Volatility on Systems Engineering Effort" (presentation), Mauricio Peña, Ricardo Valerdi, October 18, 2012 (COCOMO Forum).
- 10. "Cost Model Extensions to Support Systems Engineering Cost Estimation for Complex Systems and Systems of Systems", Jo Ann Lane, CSER 2009.
- 11. "Proposed Modification to COSYSMO Estimating Relationship", Gan Wang, Ricardo Valerdi, Barry Boehm, Alex Shernoff, INCOSE 2008.
- 12. "Towards COSYSMO 3.0", revised PowerPoint presentation by Gan Wang (filename is "COSYSMO 3.0 Definition Outline.Rev.pptx"), May 2015.
- 13. "COSATMO: Presenting the Harmonized COSYSMO 3.0 Model" (presentation), Jim Alstad, October 22, 2014 (COCOMO Forum).

Bibliography (3/4)

- 14. "Towards COSYSMO 3.0", 3rd revision of PowerPoint presentation by Gan Wang (revises [12]) (filename is "COSYSMO 3.0 Definition Outline.Rev3.pptx"), June 2015.
- 15. "C4ISR Architecture Working Group Final Report Levels of Information System Interoperability (LISI)", Department of Defense, Washington DC: OSD(ASD(C3I)) C4ISR AWG, 1998.
- 16. "The Levels of Conceptual Interoperability Model", Tolk, A., and Muguira, J., Proceedings of the 2003 Fall Simulation Interoperability Workshop. Orlando FL, September 2003.
- 17. "Towards a Holistic, Total Engineering Cost Model", Wang, G., Shernoff, A., Turnidge, J., and Valerdi, R., INCOSE Singapore, July 2009.
- 18. "COSYSMO Reuse Extension", Wang, G., Valerdi, R., Ankrum, A., Millar, C., and Roedler, G., INCOSE Utrecht, June 2008.
- 19. "COSATMO: Presenting the Harmonized COSYSMO 3.0 Model" (presentation), Jim Alstad, October 22, 2014 (COCOMO Forum)

Bibliography (4/4)

- 20. "A Survey on Interoperability Measurement." Ford, T., Colombi, J., Graham, S., and Jacques, D., Twelfth International Command and Control Research and Technology Symposium (12th ICCRTS), Newport, RI, June 19-21 2007.
- 21. "A Framework For Intelligent Assessment and Resolution of Commercial-Off-The-Shelf Product Incompatibilities", Bhuta, Jesal (PhD Dissertation), 2007.
- 22. "Software Engineering Economics" Boehm, Barry W., Prentice-Hall, Upper Saddle River NJ, 1981.
- 23. "The Incremental Commitment Spiral Model", Boehm, B., Lane, J., Koolmanojwong, S., Turner, R., Addison-Wesley, Upper Saddle River, NJ, 2014.
- 24. "The Generalized Reuse Framework—Strategies and the Decision Process for Planned Reuse", Wang, G., INCOSE SEDC16.
- 25. "Systems and Software Engineering—Life Cycle Management—Part 1: Guide for Life Cycle Management", ISO/IEC TR 24748-1:2010(E).