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The Constellation Scheduling Problem

• Problem:
 Manage a collection of satellites scheduled to monitor physical 

locations in space and time
• Challenge:

 Sensors have highly flexible capabilities, not captured in 
current scheduling models and technologies

 Schedules underutilize expensive sensors
 Missed collection opportunities can impact national security

 Evolving events and uncertainties necessitate:
 Efficient consideration of alternative schedules
 Timely schedule generation

• Assumption:
 The performance of the constellation will be evaluated w.r.t a 

fixed set of collection windows
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How is a Collection Window Defined?

• Start time
 Time window: list of potential collection start times
 Duration: fixed and known before building schedule

• Configuration: sensor configuration needed for collection
 Physical location:

 The location that needs to be observed; precise 
requirements depend on the sensing technology

• Performance: predicted observation quality. Impacted by sensor, 
sun, target geometry, weather, physical location scene, etc.

• Priority: importance relative to other collection windows
• Category: hierarchical importance (required, essential, desired)
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Collection Window Categories

• Category 1 (required): Unique to a given sensor. Sensor’s schedule 
must include all corresponding category 1 collection windows
 Example: collection windows scheduled for the safety and 

proper operation of a specific sensor; other collections a 
planner can force onto the sensor schedule

• Category 2 (essential): In general, of high priority. In some cases, 
preempted by higher priority Category 3 collection windows
 Example: periodic sensor calibration activities

• Category 3 (desired): The vast majority of collection windows to 
be scheduled. Most often lower priority than Category 2 collection 
windows
 Example: weather collections, reconnaissance, scientific 

measurement (vegetation cover, sea currents), etc. 5
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Our Approach

• Scheduling problems can be notoriously hard to solve (NP-Hard).
• We are using Operations Research based heuristics:

 Apply a MIP solver using an optimality tolerance (e.g. 1%)
 Final solution guaranteed to be near-optimal or optimal
 Small tolerances can significantly reduce time to solution

• MIPs facilitate rapid exploration of alternate formulations and 
solution methods and disambiguate the solver from the model
 Quickly assess different formulations

 Objective functions, constraint equations
 Readily extensible to incorporate uncertainty

• Sensitivity analysis
 Determine active/limiting constraints
 Rigorously determine the effects of changing objectives, 

adding/removing constraints and decision variables
7



Related Work

• Satellite scheduling algorithms favor custom rule-based techniques
 Feasible schedules produced quickly, but without

rigorous solution confidence

• Academic research is divided into two camps
 Heuristics and metaheuristics

 Comparisons of satellite scheduling (Globus et. al 2004)
 Genetic algorithms (Lining et. Al 2009)
 Simulated annealing (Peng et. al 2011)
 Greedy local (Dungan et. al 2011)
 Ant colony optimization (Wang et. al 2009)

 Exact methods (less research)
 Integer programming (Liao, 2007) – small model size 8
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Constellation Scheduling Mixed-Integer Program

Where:
• : whether collection window k starts at time t on sensor i
• : quality of starting collection window k at time t on sensor i
• : duration and priority of collection window k
• : set of feasible start times for collection window k before time t
• : scaling constant (e.g. 100) 9
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• Objective: schedule as many activities as possible 
with rewards for high priority, high quality, high 
duration collections

• Convenience variable denoting whether or not a 
collection window was scheduled

• Category one collection windows must be scheduled

• Other collections can be scheduled at most once

• Collections can not be scheduled concurrently on a 
single sensor



Predicted Observation Quality: 

• Using a medium- or high-fidelity physics based simulation, build a 
performance score normalized between 0 and 1, composed of the 
following metrics:
 Geometric access
 Coverage
 Probability of detection (PD)
 Closely Spaced Objects (CSO)

• These scores depend on:
 Weather, collection window scene background, sensor optics, 

etc.

• Predicted observation quality is calculated off-line, in advance of 
scheduling for all sensor, collection window, and start time 
combinations 10
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Example schedule with model modified to allow 
collection windows sharing configurations to run 

concurrently.

Results – Constellation Scheduling MIP

• Solutions within 99%+ of optimal in minutes using untuned Gurobi
solver
 Solving to provably

optimal usually occurs
within one hour

 Linux machine with:
 64 cores, 1 TB RAM

• Models implemented using 
Sandia’s Pyomo optimization
software library
 www.pyomo.org

• Typical problem scale:
 Two sensors
 1440 timesteps
 450 collection windows 11



Notes on Constellation Scheduling MIP

• Established a set of benchmark problem instances
 Differing numbers of satellites [1,10]
 Large time-windows (w/ majority spanning the entire planning 

time horizon)
 Competing priorities
 Time-varying predicted observation quality

• Benchmark instances aim to be applicable for model extensions
 All collection windows include a set of feasible configurations

• The model assumes prescience. In reality, after planning:
 Collection windows are added to the queue
 Predicted weather is or is not realized
 Collection fails to reveal desired information 12
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Stochastic Scheduling Models

• Developed distinct scenario-based stochastic MIP models to 
address the following areas of sensor scheduling uncertainty:

 Ad hoc collection windows
 Described by scenarios modeling collection windows with 

uncertain start times and durations
– Ad hoc collection windows assume highest priority

 Produced schedules will be resilient to disruptions and 
include a plan for “getting back on schedule”

 Weather
 Uncertain performance of scheduled collection windows 

based on weather (cloud-cover) scenarios
 Produced schedules will be resilient to performance effects 

caused by weather 14



MIP vs. Stochastic MIP Comparison
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Objective function values for schedules 
produced with stochastic and deterministic 

models (three weather scenarios)

• Exploring the value of stochastic solution
 Current models are giving a ~5% Value

of Stochastic Solution (VSS)

• We are solving the extensive form (EF)
 Generate a larger MIP with decision

variables for each scenario
 Modify original MIP objective

function

• Typically solves to optimal within one hour

• We can use Pyomo’s PySP Progressive Hedging (PH) metaheuristic 
to solve problems with many scenarios

Results – Stochastic MIPs
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Results – Stochastic MIPs (cont.)
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• Collection windows are either affected or unaffected by clouds:
• Three scenarios, each with a different time of cloud arrival

 Weather front in black rectangles (no value for collections 
affected by weather)



Objective function values for schedules 
produced with updated stochastic and 

deterministic models (100 weather scenarios)

• Model prevents collection windows below defined quality threshold 
(q0) from being considered for scheduling
 Under different scenarios, collection

windows can be above or below q0

depending on scheduled time
and sensor

• By updating the model to allow these
collections to be scheduled, we are 
seeing upwards of an 8% Value of
Stochastic Solution (VSS)

• We are solving the extensive form (EF)
with 100 weather scenarios to optimal 
on the order of a few hours

Results – Stochastic MIPs (cont.)
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Ongoing Research and Future Work

• Exploring several alternative formulations
 Allow concurrent activities

subject to constraints
 Exploiting periodic calibration

activities (“knapsack”)

• With Texas A&M, investigating models
where collections can choose from
multiple configurations

• Soliciting sensor operator expertise to meaningfully define qikt

• Exploring interrelated coverage optimization problems:
 Sensor footprint mosaics without gaps, guaranteed properties
 Sub-footprint placement according to BW constraints 21
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Ongoing Research and Future Work (cont.)

• Interested to partner with satellite planners/operators to create 
representative ad hoc and weather scenarios

• Additional model constraints, objective functions
 Scheduling of collection windows requiring multiple satellites
 Exploring the effects of removing duration from the objective
 Use coarser model over longer timeframe (multiple days) in 

conjunction with existing model (time-value of information)

• Solver tuning
 Extending OR-based heuristic implementations developed by 

Texas A&M to stochastic models
 To date, models produce many similar schedules

 Produce definitions for “dissimilar” schedules
22



Questions?
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Stochastic MIP- ad hoc Collection Windows
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