SCAPE FRAMEWORK

Leverage Advances in Big Data to Make Multi-Sensor Data Discoverable

MARCH 2017
AGENDA

1: CHALLENGES WITH GROUND SYSTEMS
2: BIG DATA ARCHITECTURE
3: APPLIED TO GROUND SYSTEM CHALLENGES
4: SCAPE ARCHITECTURE AND TECHNOLOGY
5: LESSONS LEARNED
CHALLENGES WITH CURRENT GROUND SYSTEMS

- **Data and Systems Are Closed**
 - Costly and difficult to modify (O&M)
 - Acquiring organization is often tied to a single provider/integrator/gatekeeper for that ground system

- **We Lack an Enterprise or Holistic View of Sensor and Data Environment**
 - Increasingly problems or decisions require more than a single sensor’s data to solve

- **We Must Adjust Rapidly to the Changing World**
BIG DATA APPROACHES

• An enterprise consists of multiple streams of data coming from sensors that eventually make their way into a Data Lake. We can’t observe the state of the enterprise until after the data arrives in the lake.
 - *We have a really good perspective on the past*--

• In the cloud, we can observe the entire state of the enterprise upon ingest, before data enters the Data Lake. Our cloud-based analytic system needs interactive, real time, predictive, and batch analytics.
 - *SCAPE adds a real time analytic capability to our cloud-base analytic platform.*
BIG DATA ARCHITECTURE

- The Booz Allen Cloud Analytic Reference Architecture provides a holistic approach to people, processes, and technology in four integrated layers.
- Simple, well-documented integration points make it easy to continuously evolve Big Data systems to support new sensors, data streams, and analytics.
- CARA uses the Lambda design pattern to combine streaming and batch data, leveraging context from the data lake to improve real-time analytics.

Booz Allen Cloud Analytic Reference Architecture
APPLYING CLOUD ANALYTIC ARCHITECTURES TO GROUND SYSTEMS

- **SCAPE** is an open framework and platform for ingesting and managing multi-sensor data with a focus on directing a multi-constellation enterprise.

- Combines streaming real-time events with batch analytic results at scale for optimized interoperability.

- Leverages Context Assisted Processor (CAP) subsystem to identify and apply contextual knowledge, enriching data value and real-time analytics.

- Exposes data at multiple points within the processing pipeline for analysis and enrichment.
SCAPE ARCHITECTURE AND TECHNOLOGY

• Apache Niagara Files (NiFi) – simplifies ingestion of structured data, provides many prebuilt types, with encryption and data provenance to enable secure solutions
• Apache SPARK – in memory big data processing, more complex processing faster, allows for combining stream and batch processing for powerful interactive applications
• Kafka Message Queues – enables data sharing and processing through the architecture
• Complex Event Processor – rules engine for responding to codified events in real time
• Data Registry – authoritative source for data, applications, services and relationships
LESSONS LEARNED

• Leverage Open Architecture Principles to encourage Third Party Development of Applications and Analytics

• Design for self-service and discovery

• Use Commercially Viable Open Source Software as much as possible

• Favor Integration over Development

• Control the data – don’t let it control you!

• Develop using Agile methodologies and DevOps practices where possible to match demand