Working Group Outbrief

Ground System Architectures Workshop

Session 11D

Flight Software Ground System Impacts

Mark Walker, Integral Systems, Inc. Judy Kerner, The Aerospace Corporation

Session Goals

- To discuss and expose issues related to the impact of flight software on ground systems and vice versa
- To identify solutions, actions, and ways to improve

Presenters/Panelists

- Panelists:
 - Vera Horoschak
 - Anneli Kyner
 - Jane Marquart
 - Robert Rasmussen
 - Mary Rich
 - Gerry Simon
 - Takahiro Yamada

Boeing Satellite Systems Boeing Satellite Systems NASA Goddard Space Flight Center Jet Propulsion Laboratory The Aerospace Corporation Integral Systems, Inc. Japan Space Exploration Agency

- Panel expertise included flight and ground software
 - Some panelists had extensive experience in both areas

Key Points – Core Problems

- Conflicting goals between spacecraft manufacturers, ground system developers, and operators
 - Development, scheduling, data exchange milestones are not always synched
- Complexity is key -- in space or on the ground
 - Space ground trades are "not always done well"
 - Moving complexity to the spacecraft to simplify the ground can be a double edged sword as new ground tools may be required to monitor new onboard functionality

• High level of coupling of ground software to flight

- Spacecraft commanding is at the wrong level of abstraction leaving ops talent doing mundane tasks
- Automation seems to be in the wrong place and difficult to validate
- Need early involvement of ops in flight and ground software development
- Need a common language everyone understands

Key Points – Improve Collaboration

- Involve operations team in software development early
 - "Operate before launch"
 - Convince management of the value
 - Remove barriers that inhibit collaboration
- Involve software developers in operations
- Transition operations experts through the spacecraft lifecycle (integration and test through operations)
- Hold early multi-organization meetings to build ops concept agreements and to align goals
 - Doing so makes everyone a stakeholder
- Incentivize organizations / companies to collaborate
- Provide a mechanism for "Ground Education" about flight software capability and requirements

Key Points – Use Model-based Methods

- Use model-based engineering approaches
- Standardize methods for spacecraft modeling and data representation
 - Use existing standards (e.g., XTCE, business process modeling)
 - Standardize a domain-specific subset of existing general modeling languages like UML
 - Identify new standards that may be needed
- Model behavior not just "things"
- Spacecraft manufacturer should validate the model
- Ground system developers and operators can develop and *validate* against that same model
- Avoid re-invention: reuse models (not code)

Conclusions

- "It's important and possible to improve."
- We can do this by:
 - Remembering architecture is key engineer the whole system, not just ground or space
 - Improving collaboration between flight and ground teams
 - Employing model-based techniques and standards
 - Creating template implementations for space domain standards that can be used to kick start development programs