Session Goals

• **Topic**
 – SOA (Service Oriented Architecture) based approaches for architecting satellite ground systems in a net-centric environment – Where we are today

• **Presentations & panel discussion**
 – Focus on sharing experiences in determining when (and if) a SOA-based architecture applies and experiences and lessons learned in developing or prototyping a SOA-based architecture.

• **Panel questions related to topic areas**
 – Software Architecture Considerations and Tradeoffs
 – Successes, Challenges, and Lessons Learned in Applying SOA
 – Implementation Considerations
 – Systems Interoperability
 – Standards and Core Services
 – Future Predictions
• **Acquisition and Oversight Perspective**
 – Michael Kramer, Aerospace
 – Major Steve Paine, USAF
 – John Arcos, Eltefat Shokri, Aerospace

• **Development Perspective**
 – Magdi Carlton, NASA JPL
 – Morris Brill, Northrop Grumman

• **Research Perspective**
 – Scott Tilley, SEI/CMI
 – Richard Taylor (UCI), Nenad Medvidovic (USC), Eric Dashofy (Aerospace)
Key Points

- **Definition of Service-Oriented Architecture**
 - Terminology overload: SOA is all things or “Are we drinking Kool-Aid?”
 - SOA cannot be purchased
 - Requires change of culture/paradigm;
 - Misconceptions on SOAs
 - Net-centric == SOA
 - Legacy applications can be easily integrated into SOA
 - consider using SMaRT for legacy migration
 - SOA is not a technology….it is a paradigm
 - How do you standardize a paradigm?
Key Points

- **Experiences- Lessons Learned**
 - Need to align business operations and goals - 75% fail on 1st try
 - Cost of aligning business logic with IT
 - Agility in SOA framework is more important than immediate ROI
 - Reuse drives the long-term business case
 - Industry ROI is typically not seen for the first 2-5 years
 - Start small, fail small, build when you succeed!!
 - Tension between architectural purity and user needs
 - Selection and development of services should be driven by user-centric scenarios

- **Current Status and Appropriateness of Standards**
 - Reference architecture helpful in capturing diverse SOA viewpoints
 - Reference model captures core concepts and relationships to understand essence of SOA
 - Evolving SOA standards
 - Proliferation of competing standards and standards groups
Key Points

• Implementation Considerations – Development
 – Applied to: mission control, data management, S/C analysis, environmental information systems
 • Successful applications were those best suited to a SOA approach
 – Service ownership decentralization and independent evolution entail loss of control
 • Who pays?
 • Who’s responsible?
 • New contract-business incentives evolving
 – Don’t forget
 • Security
 • Training
 • Licensing dependencies
 – Legacy System challenges:
 • Architectural mismatches
 • Operational mismatches,
 • Tool availability
 • Separation of Concerns
 – CMU-SEI SMaRT available to analyze viability of legacy component migration
 – Service granularity
Key Points

• Where are we going – Research
 – Consider WWW view
 • RESTful service architectural style vs SOAP-based Web services
 – exposing info via URLs vs methods
 – Semantics of service definition is a challenge
 • How to model and describe services?
 • QoS contract guarantees
 – Trends in SOA
 • Major Concerns:
 – From hiding Heterogeneity to Standards-based Interoperability to Integration
 • Performance
 – Like a local application to Some Real-Time to Predictable to Predictable +
Conclusions

• Despite existence of an industry standard reference model (OASIS) on SOA, there is significant disagreement on what SOA is

• Decentralization means loss of control
 – Trust is a requisite component

• Successful SOA projects in progress
 – User-centric view
 – Importance of training
 – Essential to understand and align business operations and goals for achievable expectations