

European Space Agency

METERON Operations Environment -Preparing Data Systems for Robotic Exploration

Sebastian Martin, Mariarosaria Cardone

28/02/2018

© 2018 by *European Space Agency* Published by The Aerospace Corporation with permission

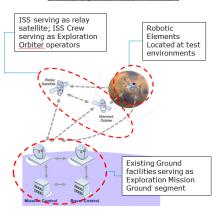
+

ESA UNCLASSIFIED - Releasable to the Public

Outline

- The METERON Project
- METERON Operations Environment (MOE)
- MOE in Robotic Exploration Experiments

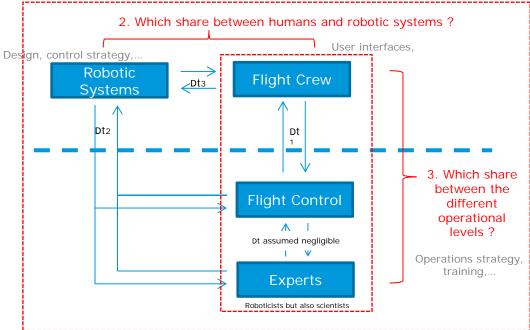
ESA UNCLASSIFIED - Releasable to the Public


Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 2

Context: initial thoughts

- 1. Future exploration architecture study teams have made assumptions about how crew can remotely perform work on a planetary surface, and more specifically operate surface robot from orbit when circumstances (contingency, etc.) preclude Earth control
- 2. Assumptions
 - 1. Maturity of crew-controlled tele-robotics
 - 2. Existing technology gaps (and how these can be bridged)
 - 3. Operational risks (proficiency, performance, failure modes)
- 3. ESA-led study in 2009 showed that it is feasible to implement an infrastructure, encompassing the ISS, that could be used for Ground Simulations, In-Orbit Demos and their combination.
- 4. Multipurpose End-to-End Robotics Operations Network

(NASA GSFC)



Simulated Exploration Mission Architecture

Some key questions

1. Which tasks have to be performed ? When ? By Who ?

 \rightarrow Helping getting answers to these questions is a the core of the METERON project

+

ESA UNCLASSIFIED - Releasable to the Public Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 4

<u>123</u>

METERON at a glance

Objectives

Demo communicationsconcepts and technologiesTest operationsconcepts and technologiesEvaluate roboticstechnologies and operationsKey questions:Control from Earth or from close-by?Supervisory control or low latency tele-ops?Comms and ground segment - how to run such ops?ApproachGround Simulations / Utilise the ISS when needed
Build upon existing infrastructure(s)

Implementation

Set-up of a simulation environment Goal is "plug and play" Operators and Astronaut(s) on Ground/ISS Various robotic assets on Earth Gradually increase complexity Risk reduction through gradual steps

ESA UNCLASSIFIED - Releasable to the Public

Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 5

The Multipurpose Operations Environment (MOE)

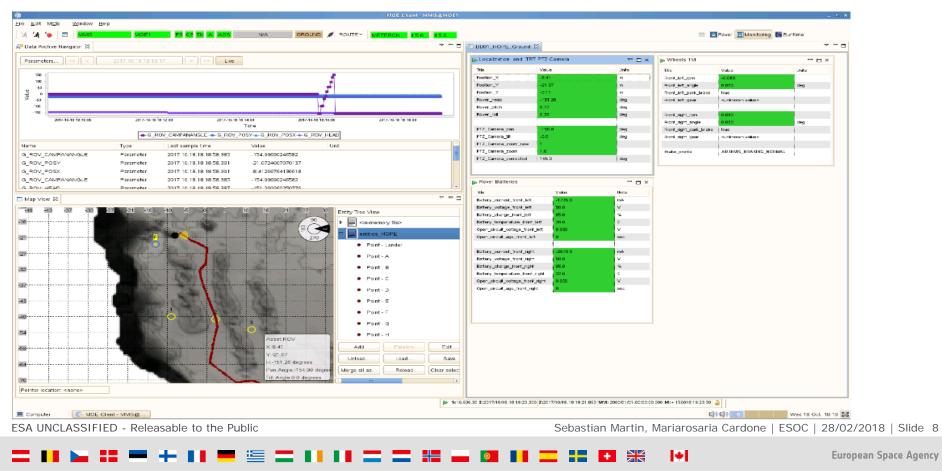
MOE is conceived as a **generic** and **flexible infrastructure** comprising several systems that can be deployed on different locations on ground and in space according to specific experiment needs.

Provides **standardised** and **consistent** system and interfaces, which are **independent** of the target robotic asset and experiment setup

Satisfies requirements for:

- Flexibility
- Adoption of new technologies
- Data distribution
- Monitoring and control of (multiple) robotic assets

MOE Main Features


The MOE provides the following main features:

- Monitoring and control of a robot via direct link and via relay link
- Management, distribution, transfer, storage, and display of data produced by the robotic systems
- Monitoring and control of experiment execution
- Support for planning of experiments and generation of command schedules
- Archiving and retrieval of all experiments data
- Simulation of an orbiter (latency, AOS/LOS, data rates)

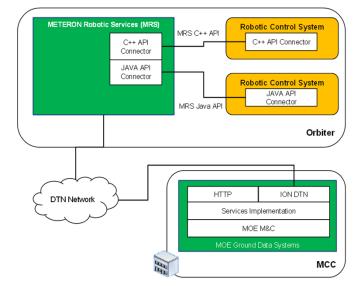
MOE Main Features

esa

European Space Agency

MOE Systems

MOE M&C system


- main data system for ground operators
- monitoring and control for the various robotic systems
- deployable on various ground nodes
- interfaces to the METERON Robotic Services (MRS)

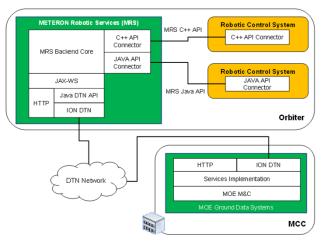
METERON Robotic Services (MRS)

• flexible generic service based interface

- · deployable on ground and in space
- designed and implemented following the principles of the CCSDS Mission Operation (MO) standard
- proof-of-concept for the CCSDS MO M&C Services and the CCSDS Telerobotic Operations Services (Green Book)

ESA UNCLASSIFIED - Releasable to the Public

+


+

Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 9

METERON Robotic Services Implementation

- Compliant to the CCSDS Mission Operation (MO) Services
- Standard Java and C++ API to integrate systems with the MRS services
- Implemented as web-services
- Two communication technologies:
 - HTTP only for ground comms (data distribution on ground)
 - DTN for the space to ground comms
- Custom Java API (JDTN) to DTN Bundle Protocol

The MRS services are implemented as several independent components, which can be configured and deployed individually on both space and ground.

METERON Experiments & MOE Evolution 1/3

"METERON is a combination of Ground Simulation Testing (GST) and In-Orbit Demonstration (IOD) organised in a series of "steps" of increasing complexity"

OPSCOM1

- October 2012
- ISS Crew: Sunita Williams
- to validate end-to-end M&C comms (first DTN demo)
- simplified Rover: LEGO MOCUP

OPSCOM2

- August 2014
- ISS Crew: Alexander Gerst
- to validate end-to-end M&C comms using full duplex DTN
- Realistic rover: ESA EUROBOT
- first use of MOE M&C and MRS
 - implementation of MOE M&C
 - implementation of generic and robotic services (no video)
 - support for one robotic asset

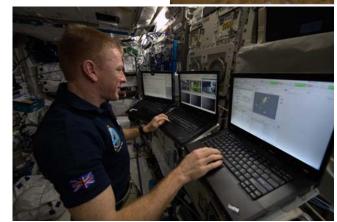
<u>на</u>,

• implementation driven by the target robotic asset and RCS

+

ESA UNCLASSIFIED - Releasable to the Public

Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 11



METERON Experiments & MOE Evolution 2/3

SUPVIS-M

- April 2016
- ISS Crew: Timothy Peake
- to investigate various robotics and operations strategies with human in the loop
- collaboration with the United Kingdom Space Agency (UKSA) and Airbus UK
- Robotic asset: Bridget test-bed
- MOE was used to monitor and control the Rover and distribute video feeds on ground
 - definition of Video Service to distribute video feeds to multiple clients on ground
 - support for the definition of synthetic TM parameters
 - Support for Ackermann driving (via GUI and direct commanding)

ESA UNCLASSIFIED - Releasable to the Public

Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 12

European Space Agency

252

MOE Integration with ESTEC (TEC-MMA) ExoTeR Rover



- Enabling the monitoring and control of
 - the ExoTeR rover via relay link through the proprietary Rover Control System both located at ESTEC
 - the ExoTeR 3Drov simulation via direct link deployed at ESOC

MOE was adapted to provide CCSDS Services to

- Demonstrate the applicability of CCSDS MO Services (COM and M&C) to the domain of Telerobotics
- Translate of Robotic Web Services into CCSDS Robotic Services
- The same (Java/C++) MRS API used for the services deployed for METERON experiments was also implemented for the MOE CCSDS Services to facilitate the integration
- The CCSDS Services were implemented using the NanoSat MO Framework used for OPS-SAT

ESA UNCLASSIFIED - Releasable to the Public

Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 13

■ II ≥ II = + II = ⊆ I II II = Ξ II = II = II = II ...

METERON Experiments & MOE Evolution 3/3

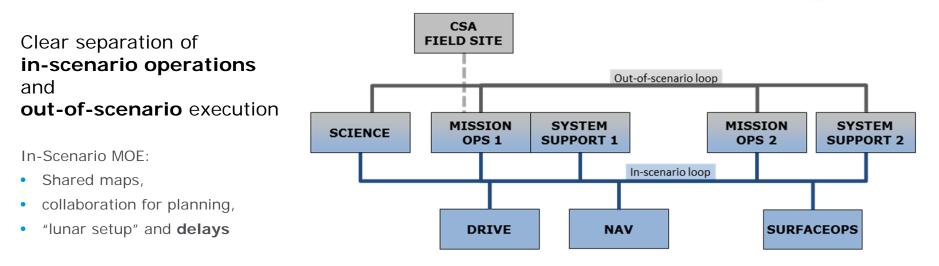
• HOPE (Human/robotic Operations Preparation Experiment)

- Ground based experiment
- Collaboration with CSA
- CSA Rover in "lunar scenario"
- Distributed operations teams in Canada (CSA) and Germany (ESA/ESOC)
 - Surface Operations Teams (planning & coordinating)
 <->
 - Rover Operations teams (driving & navigating)

MOE was used to define in and out of scenario environments

- Distributing data with/without delays to in/out scenario teams
- Generating synthetic parameters to provide a more realistic immersed experience to the in-scenario team

ESA UNCLASSIFIED - Releasable to the Public


Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 14

MOE for different scenario teams

Out-of-Scenario MOE:

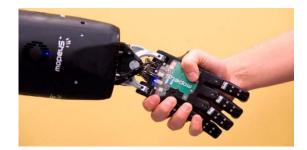
- Logistics of setup and communications
- different MMI's and views,
- no artificial delay

• generation of synthetic parameters

ESA UNCLASSIFIED - Releasable to the Public

Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 15

MOE as enabler for:



- Swift integration of robotic asset due to MRS CCSDS MO Services
- Operators trained on interface even if using "foreign" rover
- Distributed nature of the in-scenario operations team highlighted need for suitable tools that make it easy to share and discuss the relevant data.
 - Opportunity to discuss plans with in-scenario operators
 - Collaborative route planning as important aspect of experiment
 - A distributed command history shared amongst all systems across sites was crucial in a distributed operations environment.
- Tight integration, synchronisation and sharing of information between systems (especially Rover Control System and Mission Control System) was essential.

Thank you!

Sebastian.Martin@esa.int

http://blogs.esa.int/meteron/

ESA UNCLASSIFIED - Releasable to the Public

Sebastian Martin, Mariarosaria Cardone | ESOC | 28/02/2018 | Slide 17