Small Sat Ground Systems

- Kratos has long tradition in building satellite ground systems
 - Created quantum product line for small satellites
 - Traditional functionality in software based solution
 - Flexible deployment
 - Reduced footprint
 - Scalable
 - Wanted to look at other options for small satellite ground architectures
Large Constellations

• Large constellations now feasible with small satellites
 – Cost to build, launch and operate traditional satellite negated concept of a large constellation
 – Small satellites now have companies looking at constellations in the thousands

• Traditional ground system architecture is not feasible
 – Stovepipe architectures and hardware reliance is too costly to operate constellations of hundreds much less thousands
Cloud Computing Services

• Deploy a ground system in a cloud
 – Eliminate hardware costs
 – Eliminate maintenance costs
 – Reduce floor space
 – Scalability
 – Collaboration
Kratos Cloud Study

• Study Goals
 – Is building a satellite ground system in the cloud realistic?
 – Will a cloud based architecture work for 1,000 satellite?
 – Are Kratos products favorable to operate in a cloud?

• Parameters
 – 1,000 satellite constellation
 – 30 simultaneous satellite contacts
 – 100 simultaneous system “Users”
Parameters

- Command and Control only
- 30 quantumCMD apps
 - C2 and M&C
- Fleet management tool for contact schedule
- 100 simulated web browser “Users”
- A test director using scripts to simulate “User” activity
• The scripts started each “User” individually, spacing them out randomly
 – Each “User” started at the Fleet management tool page for 10-14 seconds
 • Screen shot saved by Test Director for quality check to show page filled in correctly
 – “User” drilled down to assigned spacecraft page on quantumCMD for 8-10 seconds
 • Screen shot saved by Test Director for quality check to show page filled in correctly
 – The “User” increments s/c contact number by 1 and cycles through remaining 29 active contacts doing same process for each s/c
• Test Director script tracked all “Users”, logging times, events, and completions
• Image thumbnails were checked to ensure data filled in correctly for pages
 – Full size images were spot checked to ensure data was as expected
Lessons Learned

• VMs were easily imported to the cloud
 – This enabled us to import official quantumCMD virtual machines without having to recreate them
 – Updating instances running in the cloud is identical to traditional VM upgrades
• Largest performance concern was Fleet Management tool, maintains connectivity to 30 quantumCMD appliances, maintains a wide data set for all spacecraft, and receives frequent network traffic from “User” browsers
 – Running on a more powerful instance type helped address performance concerns
 – Tuning in a few software areas was also made to reduce latency and enable faster data access performance
What’s Next

• Include FEP & Ground Modem
 – Cmd/Tlm processing
 – Signal modulation
 – Digital RF from Cloud to Ground Station

• Use cloud-based ground system for end-to-end ConOps
 – Bench/compatibility testing
 – Launch & On-Orbit Checkout
 – On-Orbit Operations
Summary

• Satellite operations via a cloud is feasible
 – Significant cost savings versus building/maintaining physical ground system
 – Easily manage new applications or performance upgrades

• Trade offs
 – Importance of data security
 – Maintaining control over infrastructure
 – Access assurance