
HARRIS.COM  |  #HARRISCORP

Place image here
(10” x 3.5”)

CLOUD-BASED PRODUCT GENERATION 
PLATFORM – LESSONS LEARNED
JAMES GUNDY AND JUSTIN SANCHEZ
Senior Software Engineers

© 2018 by Harris Corporation. Published by The Aerospace Corporation with permission.



| 2Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

Goals & Objectives

Harris has been a long-standing mission partner with NOAA in 
developing and deploying mission critical Earth-sensing 
instruments and ground systems
• Harris has leveraged the successful Product Generation architecture 

from GOES-R to develop the next-generation distributed product 
processing infrastructure called DownburstTM

• This briefing presents lessons learned from Harris research and 
development for Cloud-based product processing



| 3Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

Downburst™

Distributed Product Processing Infrastructure: 
• Dynamic, parallel block processing for scalable, high-performance computing
• In-memory database for high-throughput input/output (I/O)
• High-speed messaging system
• Multi-mission support

Derived from GOES-R Product Generation Architecture
• Leverage technology and approaches used for product processing workload 

of five satellite instruments
‒ ABI with 16 bands and 2km - 0.5km 

resolution
‒ Generates 35 L0/L1/L2+ environmental  

and space weather products from
geostationary satellite 

‒ Multi-regional processing – full disk, 
CONUS and mesoscale (non-fixed location)

‒ 100Mbps raw data rate
‒ Generates 16.1 TB products per day 

(60x more data than previous generation)

GOES-R First Light Image (True Color)



| 4Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

DownburstTM Features and Characteristics

• Parallelization to satisfy tight product latencies
• Distributed processing across 200+ servers

Compute 
Intensive

• 697,168 files and 16.1TB data per day
• Latencies as low as 1.8sHigh Throughput

• System availability 99.99%
• Product availability of 99.9%High Reliability

• Complex product dependency model
• Capability to add/update algorithms at run-timeAdaptability

• Scale 300+% without redesignScalability

• FISMA highSecurity



| 5Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

Transition Downburst™ to Cloud

Drivers for moving to the Cloud:
• Reduce infrastructure costs
• Ease scalability
• Improve maintainability
• Relieve facilities constraints

Public Cloud 
• Current utilization of multiple cloud 

vendors (Google and Amazon)
• Fully containerized solution using 

Docker and Kubernetes
• Distributed architecture providing 

straightforward transition to cloud
• Location in multiple regions

‒ Asia-east for Asian satellite data
‒ US-east for US satellite data

Research Goal: Demonstrate Downburst is cloud compatible 



| 6Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

Cloud Paradigm Changes

More focus on mission, less on infrastructure
• Engineering talent focused on developing/running services
• Infrastructure/hardware administration effort significantly reduced

‒ Manpower maintaining local infrastructure would exceed cloud cost alone

Fluid Compute Resources
• Get resources that you need, when you need it

‒ Expand the resources for extra missions/testing on demand
‒ Run in the region that is best fits mission need 

• Reduce cloud costs by deleting resources on off-hours
‒ Forced team to script/automate all parts of deployment/teardown
‒ Created consistency and quality of deployment/teardown (10-15 Minutes)

Increased accessibility
• Engineering talent not restricted to working a specific location
• Accessing resources and standing up demonstrations is easier
• No impact from local shutdowns enables greater up-time



| 7Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

Lessons Learned – General

Transition was fairly straightforward – no significant roadblocks
• Initial port only took a few weeks (proof of concept)
• Downburst™ similarity to microservices architecture facilitated 

smooth transition to Docker/Kubernetes
• Use of Googles Kubernetes Service (GKS) minimized infrastructure 

management
Google Cloud Platform (GCP) was bleeding edge in the beginning
• Significant changes in interfaces and commands encountered over 

the year 
• GitHub projects/tutorials that leveraged GCP become outdated over 

time
Constant security awareness was needed
• Virtual machines are deployed securely by default, but could easily 

be made unsecure by opening firewall ports, exposing service IPs
• All traffic was routed through Kubernetes Ingress Controller to 

restrict number of open connections
• Secured connects facilitated through Let’s Encrypt + Oauth2 

authentication



| 8Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

Lessons Learned – General (continued)

Storage management was complex
• Used storage buckets for products

‒ Access was either project-restricted or public, increasing difficulty in 
controlling access

‒ Products were regularly purged to control cost
‒ Required administration to manage purges effectively

• Often still required virtual disks for applications
‒ If configuration not properly set, new disks automatically were created, 

but not deleted automatically
• Used Gluster for shared disk storage

‒ Built in Kubernetes storage could not be shared across multiple services
‒ Gluster/Ceph must be setup manually – not difficult to setup, but 

challenging to automate

Docker images were controlled in our own repository
• Major upgrades in public images can cause issues unexpectedly
• Improved control of contents inside images



| 9Cloud-based Product Generation Platform – Lessons Learned
February 2018 NON-Export Controlled Information

Lessons Learned - Kubernetes

Kubernetes provides container orchestration

Kubernetes has a steep initial learning curve, 
but can provide significant value if utilized fully

• Resource Management
• Horizontal Scaling
• Controlled Rollouts/Rollbacks

• Deployment and StatefulSet
for deploying images/pods

• Is more resilient and scalable than simple pods

• PersistentVolume/Claim for 
storage configuration

• Abstracts persistence deployment
• Improves management of storage resources

• IngressControllers in service 
configurations

• Performs all routing in Ingress Configuration -
simpler than custom proxies

• ConfigMaps and Secrets for 
configuration management

• Easier to manage than persistent volumes
• Secrets obfuscate sensitive information -

not really secure without RBAC
• Readiness and Liveness 

Probes for monitoring
• Determines when pods have completed startup
• Necessary to account for dependencies in

automated deployment

• Networking/Load Balancing
• Configuration Management
• Storage Access/Management

• Cloud Portability
• Open Source


