CLOUD-BASED PRODUCT GENERATION
PLATFORM — LESSONS LEARNED

JAMES GUNDY AND JUSTIN SANCHEZ

Senior Software Engineers

$® TECHNOLOGY TO CONNECT,
HARRIS.COM | #HARRISCORP INFORM AND PROTECT™

© 2018 by Harris Corporation. Published by The Aerospace Corporation with permission.

Goals & Objectives l/-lARRIS

Harris has been a long-standing mission partner with NOAA in
developing and deploying mission critical Earth-sensing
iInstruments and ground systems

« Harris has leveraged the successful Product Generation architecture
from GOES-R to develop the next-generation distributed product
processing infrastructure called Downburst™

« This briefing presents lessons learned from Harris research and
development for Cloud-based product processing

Cloud-based Product Generation Platform — Lessons Learned

NON-Export Controlled Information February 2018 |2

Downburst™ l/'l'\RRIS E

Distributed Product Processing Infrastructure:

« Dynamic, parallel block processing for scalable, high-performance computing
* In-memory database for high-throughput input/output (1/0O)

« High-speed messaging system

* Multi-mission support

Derived from GOES-R Product Generation Architecture
» Leverage technology and approaches used for product processing workload
of five satellite instruments

— ABI with 16 bands and 2km - 0.5km
resolution

— Generates 35 LO/L1/L2+ environmental
and space weather products from
geostationary satellite

— Multi-regional processing — full disk,
CONUS and mesoscale (non-fixed location)

— 100Mbps raw data rate

— Generates 16.1 TB products per day
(60x more data than previous generation)

GOES-R First Light Image (True Color)

NON-Export Controlled Information Cloud-based Product Generation Platform — Lessons Learned

February 2018 I3

Downburst™ Features and Characteristics HARRIS

 Parallelization to satisfy tight product latencies
» Distributed processing across 200+ servers

» 697,168 files and 16.1TB data per day
» Latencies as low as 1.8s

» System availability 99.99%
» Product availability of 99.9%

» Complex product dependency model
» Capability to add/update algorithms at run-time

» Scale 300+% without redesign

* FISMA high

Cloud-based Product Generation Platform — Lessons Learned
| 4
February 2018

NON-Export Controlled Information

Transition Downburst™ to Cloud l/-lARRlS

Research Goal: Demonstrate Downburst is cloud compatible

Drivers for moving to the Cloud:

« Reduce infrastructure costs) Google Cloud Platform
- Ease scalability 4 l!) \) @mtai,@
 Improve maintainability docker kubemetes| | oo e
* Relieve facilities constraints Engine @ ,dent@
Kubernetes Engine o
- (Visualization) Mgmt
. (Product Generation)

Public Cloud ;

e
* Current utilization of multiple cloud | -) Storage

vendors (Google and Amazon)

- Fully containerized solution using ~ _ _H#AE
Docker and Kubernetes weramazZon

. . L 27 webservices
« Distributed architecture providing Do
straightforward transition to cloud S CCRCRIOMREN (ESEESioEicieh

Il T

« Location in multiple regions
— Asia-east for Asian satellite data
— US-east for US satellite data

Cloud-based Product Generation Platform — Lessons Learned

NON-Export Controlled Information February 2018 |5

Cloud Paradigm Changes l/-lARRIS

More focus on mission, less on infrastructure
« Engineering talent focused on developing/running services
 Infrastructure/hardware administration effort significantly reduced

— Manpower maintaining local infrastructure would exceed cloud cost alone

Fluid Compute Resources

« Get resources that you need, when you need it
— Expand the resources for extra missions/testing on demand
— Run in the region that is best fits mission need

« Reduce cloud costs by deleting resources on off-hours
— Forced team to script/automate all parts of deployment/teardown
— Created consistency and quality of deployment/teardown (10-15 Minutes)
Increased accessibility
« Engineering talent not restricted to working a specific location
» Accessing resources and standing up demonstrations is easier
* No impact from local shutdowns enables greater up-time

Cloud-based Product Generation Platform — Lessons Learned

NON-Export Controlled Information

February 2018 |6

Lessons Learned — General l/-lARRls

Transition was fairly straightforward — no significant roadblocks
 Initial port only took a few weeks (proof of concept)

« Downburst™ similarity to microservices architecture facilitated
smooth transition to Docker/Kubernetes

« Use of Googles Kubernetes Service (GKS) minimized infrastructure
management
Google Cloud Platform (GCP) was bleeding edge in the beginning

« Significant changes in interfaces and commands encountered over
the year

« GitHub projects/tutorials that leveraged GCP become outdated over
time
Constant security awareness was needed

« Virtual machines are deployed securely by default, but could easily
be made unsecure by opening firewall ports, exposing service IPs

 All traffic was routed through Kubernetes Ingress Controller to
restrict number of open connections

« Secured connects facilitated through Let's Encrypt + Oauth2
authentication

Cloud-based Product Generation Platform — Lessons Learned
| 7
February 2018

NON-Export Controlled Information

Lessons Learned — General (continued) HARRIS

Storage management was complex

« Used storage buckets for products

— Access was either project-restricted or public, increasing difficulty in
controlling access

— Products were regularly purged to control cost
— Required administration to manage purges effectively
« Often still required virtual disks for applications

— If configuration not properly set, new disks automatically were created,
but not deleted automatically

« Used Gluster for shared disk storage
— Built in Kubernetes storage could not be shared across multiple services

— Gluster/Ceph must be setup manually — not difficult to setup, but
challenging to automate

Docker images were controlled in our own repository
* Major upgrades in public images can cause issues unexpectedly
« Improved control of contents inside images

Cloud-based Product Generation Platform — Lessons Learned
| 8
February 2018

NON-Export Controlled Information

Lessons Learned - Kubernetes l/-lARRIs

Kubernetes provides container orchestration

* Resource Management « Networking/Load Balancing * Cloud Portability
* Horizontal Scaling « Configuration Management * Open Source
« Controlled Rollouts/Rollbacks « Storage Access/Management

Kubernetes has a steep initial learning curve,
but can provide significant value if utilized fully

* Deployment and StatefulSet » Is more resilient and scalable than simple pods
for deploying images/pods

» PersistentVolume/Claim for Abstracts persistence deployment
storage configuration * Improves management of storage resources

» IngressControllers in service Performs all routing in Ingress Configuration -
configurations simpler than custom proxies

Easier to manage than persistent volumes
Secrets obfuscate sensitive information -
not really secure without RBAC

« ConfigMaps and Secrets for
configuration management

* Readiness and Liveness » Determines when pods have completed startup
Probes for monitoring » Necessary to account for dependencies in
automated deployment

Cloud-based Product Generation Platform — Lessons Learned

NON-Export Controlled Information February 2018 |9

