
©2007 The Aerospace Corporation

GPGPU Computing and Multicore Processors:
Exploring The Spectrum

B. Scott Michel, Ph.D.
High Performance Computing Section

Computer Systems Research Department

scottm@aero.org

2

Organization and Outline

Target Audience: “A little something for everybody”

Talk Outline:

Part I: How Did We Get Here? What Is The Technology
Spectrum?

Part II: A Look At The Software Ecosystem

Part III: Acquisition Issues

3

Part I

How Did We Get Here?
What Is The Technology Spectrum?

4

I Have A Need… For Speed!

• Ground systems don’t run out of reasons for more processing
capability

– Increasing end-user data needs: transform the raw data into
various types of end-user product

– Increasing requirements for technology insertions, future
programs

• Increased number of transistors, modest increases in performance

– 90% die relatively passive as L1, L2 and L3 cache

– 10% die actively computing

5

Intel “Moore’s Law” Trends

6

Other Important Factors…
Heat and Feeding The Processor

• Physics is winning!

– Iss vs Idd and shrinking feature size: static leakage current
approaching switching current

– Heat proportional to clock frequency

– Static current leakage contributes significant idle heat

• The Memory Wall: Feeding the processor

– High latency penalty for off-processor fetch

– Cache nondeterminism: little or no control over cache
replacement actions or policies

• Superscalar “bag o’ tricks” exhausted: instruction level parallelism,
deeper pipelines, etc…

• Compiler optimizers aren’t the programmer’s friend

7

Today’s Two Solutions:
SIMD And Multiple Cores

• SIMD: Single Instruction, Multiple Data

– Basis of Cray’s architecture

– Found in graphics processor units

– Intel/AMD SSE2, SSE3 instructions,
PowerPC Altivec

– Upside: Compute multiple results
per instruction

– Downside: Requires data structure
refactoring

x1 x2 x3 x4

y1 y2 y3 y4

x1+y1 x2+y2 x3+y3 x4+y4

• Multiple cores

– Invert the 90/10 rule: 90% active, 10% passive

– Slower clock speed: decrease heat with comparable or higher problem throughput as
single core processor

– SWAP improvements: hibernate idle cores (power management), shift workload
between cores (thermal management)

8

Multicore Taxonomy:
Homogeneous vs. Heterogeneous

• Homogeneous multicore

– “The Traditional Approach”: duplicate
execution units as needed

– Intel/AMD dual core, quad core

– Sun UltraSparc T1, T2 (aka Niagara, Niagara
II)

• Heterogeneous multicore

– General-purpose and special-purpose
elements

– General-Purpose GPU computing

– STI Cell Broadband Engine

– MIT RAW and USC/ISI MONARCH

9

General-Purpose GPU Computing

• Started as an effort to compute game physics between frames

• Harnesses the GPU’s SIMD stream processing on matrices

– NVIDIA nv40, G70: 24 and 32 parallel floating point units

– AMD/ATI Radeon X1K: 48 parallel FP units

• GPU code generally outperforms CPU code by 2-4x

• Delivers higher GFLOPS/W compared to uniprocessors

– nVidia nv40 @ 400 Mhz ⇑ 0.55 GFLOPS/W

– Intel x86_64 @ 3 GHz ⇑ 0.11 GFLOPS/W (approx.)

• Reasonably cost effective upgrade, ~$300

10

GPGPU Application Areas

• Linear algebra acceleration

– LU decomposition

– Matrix multiplication

• Signal processing

– FIR filters

– Autocorrelation filters

• Scientific computing

– FEM, ODE, PDE solvers

– Navier-Stokes solvers

• Database “SELECT” query processing

• GPU-accelerated Folding@Home

• Not particularly good at FFTs

11

GPGPU Software Development Challenges

• Mapping graphics idioms to the problem

– Shader languages are designed for graphics, not scientific
computing

– Many shader languages to choose from…

• Single precision floating point

– Truncates results, no IEEE rounding: Numerical drift

– Iterative refinement for error compensation: Double precision
computation on CPU, feed error correction to GPU

• No double precision floating point

• No arbitrary array or matrix accesses: Reformat data to GPU-
friendly format

• Slow GPU-to-CPU result upload: Keep computation on GPU for as
long as possible

12

A Trivial GPGPU Performance Benchmark:
ynew = yold + alpha x (saxpy)

• CPU (3.2 GHz AMD x86-64)

– Tests execution speed, cache/memory throughput

– cpubench-gcc: “-O3 -Os -funroll-loops”

– cpubench-u16: 16x hand-unrolled loop

• GPU

– Tests parallelism, texture memory throughput

– Execution only: render/execute only

• Problem size: 32 ≤ x ≤ 1048576 (6x6 to 1024x1024 texture sizes),
step size 4681

• Iterated test at each sample point 300x for statistical significance

13

GPU vs. CPU: MFLOPS comparis

0

200

400

600

800

1000

1200

1400

1600

0 131072 262144 393216 524288 655360 786432 917504 1048576

Problem Size (4-component elemen

GPU
CPU, unrolled 16x
CPU, gcc optimize

14

STI Cell Broadband Engine

• Sony/Toshiba/IBM co-designed, co-developed
processor

• Heterogeneous multicore technology

– PowerPC-64 Primary Processor Element

– 8x Symbiotic Processor Elements (SPEs)

– Vector processor units, based on VMX
instruction set

– 256 GFLOPS peak, single precision FP

– 26 GFLOPS peak, double precision FP

– 2.2 GFLOPS/W

• Playstation 3’s processor

• LANL “RoadRunner”: 8,000 Cell-based nodes out of
16,000 total nodes

15

Reactions to Cell…

• You either love it or hate it!

• “Developers are forced to sweat bullets to take advantage of the Cell
Platform” -John Carmack, ID Software

• “[Software developers] are tearing their hair out over multi-core” -
Tom Halfhill, Microprocessor Report

• Valve’s Steve Bond isn’t particularly impressed, efforts focused on
consumer Intel/AMD multicore

• “What's so hard about doing non-graphics programming on a GPU?”
- John Stokes, Ars Technica

In a blog entry on another site that links O'Sullivan's post approvingly, parallel
programming researcher Michael Suess reports that a student of his who worked
on both Cell and CUDA found Cell to be much easier.

• “[The Cell’s] architecture is very well suited toward running a game
and not terribly suited toward running a desktop computer” -Alex
Hastings, Insomniac Games (IEEE Spectrum, Dec. 2006).

16

Cell BE Software Development Challenges

• Software tool ecosystem is evolving…

– Programming using GCC intrinsics: Glorified assembly language

– Cell SDK has a lot of code, but is it just a starting point for ideas?

• 256K Local Store: All code + data in a compact space

– Message orchestration: Get the next tile, work unit into LS when
it’s needed, reassemble results on PPE

– Double buffering: Hides latency, cuts available LS memory

– Data orchestration: Get the data into a SIMD-friendly format,
arrays of structures vs. structures of arrays, avoid accessing
singletons (“unaligned”) data

• Not dissimilar to GPGPU software development, but maybe a little
easier

17

Sun UltraSparc T1 and T2

• Originally code named “Niagara”

• 4, 6 and 8 core flavors

• Architecturally designed for thread-heavy
applications: 8 cores x 4 threads/core

• UltraSparc T1 is not designed for numeric
applications, has one shared floating point
unit

• UltraSparc T2 enhances numeric
capabilities, thread execution

• Runs existing code

• “Thundering herd” lock contention problem
requires minor software redesign

18

Accelerators

• ClearSpeed Advance

– Primary market: high performance technical computing,
floating point computation

• Aegia PHYSX physics accelerator

– Initial market: compute physics during game play

– Branching out to the HPC market… stay tuned…

• FGPAs and reconfigurable computing

19

MONARCH:
John Granaki, USC/ISI

20

Part II

A Look At The Software Ecosystem

21

Common Issues:
Vectorization and Parallelization

• 4-element <x, y, z, w> is the most common: SSE2/3, Altivec, GPU, Cell

• Structures of Arrays

– Operates on multiple elements together

– Example: multiply-add (saxpy)

• Arrays of Structures

– Treats vector components individually

– Example: Comparison to constant, filtering data

• Primary effort is data refactoring

– Sometimes it’s OK to take this hit when data isn’t organized as a
stride-1 array of vectors -- YMMV…

– Shuffle/permute primitives reformat individual vectors

– Lots of algorithm literature from Cray, late 80’s and early 90’s
research to rely on and resurrect…

22

SIMD Structure of Arrays

x1 x2 x3 x4

y1 y2 y3 y4

x1+y1 x2+y2 x3+y3 x4+y4

z1 z2 z3 z4

z1*a1 z2*a2 z3*a3 z4*a4

<a1, a2, a3, a4>

23

SIMD Array Of Structures

x y z w

c c c c

x==c y==c z==c w==c

0/1 0/1 0/1 0/1

24

GPGPU Software Tools

• Major Players: RapidMind and Peakstream

• RapidMind

– Startup by Mike McCool and graduate students, U. Waterloo.

– Outgrowth from fragment shader language research (libsh)

– Embedded functional language, just-in-time compilation to
host’s GPU

• Peakstream

– C++ software library, classes and their operators structure
the computation

– Just-in-time compilation to proprietary virtual machine,
excellent debugging facilities

– Platform-limited: Linux and AMD Stream processor

25

Hardware Vendor GPGPU Software Tools

• AMD/ATI CTM (“Close To the Metal”)

– Designed to be general-purpose from the ground up, works
with X1K GPUs, AMD Stream processor

– Been around for approx. one year

• NVIDIA CUDA

– NVIDIA’s relatively new general-purpose GPU programming
toolkit

– Targeted to G70 GPU line

• Competition between the major GPU vendors can only improve
their respective toolkit offerings

26

Cell BE Software Tools

• Currently, very primitive and rapidly evolving
• Cell SDK v1 and v2

– gcc 3.3 has limited autovectorization, improved in 4.2 and 4.3 but
hand-rolled is generally better

– SDK libraries and code: a good idea launch pad
– SDK v2 program chaining: data stays in place, keeps SPU busier

• IBM efforts:
– Contracted ports of VSIPL/VSIPL++ and other libraries
– xlC/C++ compilers: research versions have advanced optimizers,

OpenMP support, not in general availability (yet)
• RapidMind generates code targeted to Cell
• Mercury Computer Systems offers their own version of a Cell SDK
• Message orchestration, SPU buffer and memory management is the

developer’s problem
– Remember the Apple][and TRS-80s?

27

Selected Multicore Research Areas

• Software Transactional Memory (STM)

– Memory regions with acquire, operate, commit and rollback
semantics; nested transactions

– Controversial: Is STM feasible? Is STM really deadlock avoiding or
lock-free? How heavy are transactions? Is STM really the right
paradigm? How does a STM transaction recover?

• Parallelizing, autovectorizing compiler research and languages

– Interpreted languages, virtual machines are easier to transform

– Explicit vs. implicit parallelism in a language: Is explicit necessary?

– Important to see the high-level sequence of operations and
recognize patterns, e.g., matrix multiply, and combine operations

– Functional languages making a comeback?

• Re-evolution vs. revolution and evolution: lots of work done in the 80’s
and early 90’s in multi-processor systems

28

Part III

Acquisition and Program Issues

29

Technology Refresh:
It’s Inevitable

• Long timeline programs don’t like moving targets but want to leverage
new capabilities

• GPU: Low-to-medium short-term risk
– Cost effective: $300 - $500 hardware upgrade
– Software recode required, but performance payoff is 2x - 4x better

than uniprocessor, numerical convergence issues
• Cell: Medium-to-high short-term risk

– PS-3 hardware relatively cost effective, IBM QS20 cluster and
Mercury blades are investments

– Developing immature software ecosystem, but with potentially high
performance gains in single precision FP, numerical convergence
issues

– Incrementally migrate functionality to Cell SPUs (LANL approach)
• UltraSparc T1, Intel/AMD Duo and Quad core: Low short term risk

– Highly threaded applications see most benefit
– Runs existing code

30

Concept Stage Programs

• GPU: Low-to-medium risk

– NVIDIA and AMD/ATI recognize a marketplace. compete with
Cell and other multicore technologies

– Toolkits will evolve, less management burden on developer

• Cell: Low-to-medium risk

– Software ecosystem evolving and will stabilize

– Leverage today’s graphics fragment shader expertise to
bootstrap efforts, develop in-house expertise

– Encourage multiple versions of code, benchmark, develop
“rules of thumb”

• UltraSparc T1, Intel/AMD Duo and Quad core: Low risk

31

Resources

32

Selected Resources

GPGPU:

http:// www.gpgpu.org: GPGPU resources

http://www.gpgpu.org/sc2006/workshop: SC’06 workshop

http://ati.amd.com/companyinfo/researcher/documents.html:
AMD/ATI CTM document library

http://developer.nvidia.com/object/cuda.html: NVIDIA CUDA
home page

Cell BE:

http://www.ibm.com/developerworks/power/cell/: IBM’s Cell
developer resources

MONARCH: John Granaki (granaki@isi.edu)

Me: scottm@aero.org

