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Organization and Outline

Target Audience: “A little something for everybody”

Talk Outline:

Part I: How Did We Get Here? What Is The Technology 
Spectrum?

Part II: A Look At The Software Ecosystem

Part III: Acquisition Issues



3

Part I

How Did We Get Here?
What Is The Technology Spectrum?
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I Have A Need… For Speed!

• Ground systems don’t run out of reasons for more processing 
capability

– Increasing end-user data needs: transform the raw data into
various types of end-user product

– Increasing requirements for technology insertions, future 
programs

• Increased number of transistors, modest increases in performance

– 90% die relatively passive as L1, L2 and L3 cache

– 10% die actively computing
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Intel “Moore’s Law” Trends
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Other Important Factors…
Heat and Feeding The Processor

• Physics is winning!

– Iss vs Idd and shrinking feature size: static leakage current 
approaching switching current

– Heat proportional to clock frequency

– Static current leakage contributes significant idle heat

• The Memory Wall: Feeding the processor

– High latency penalty for off-processor fetch

– Cache nondeterminism: little or no control over cache 
replacement actions or policies

• Superscalar “bag o’ tricks” exhausted: instruction level parallelism, 
deeper pipelines, etc…

• Compiler optimizers aren’t the programmer’s friend
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Today’s Two Solutions:
SIMD And Multiple Cores

• SIMD: Single Instruction, Multiple Data

– Basis of Cray’s architecture

– Found in graphics processor units

– Intel/AMD SSE2, SSE3 instructions, 
PowerPC Altivec

– Upside: Compute multiple results 
per instruction

– Downside: Requires data structure 
refactoring

x1 x2 x3 x4

y1 y2 y3 y4

x1+y1 x2+y2 x3+y3 x4+y4

• Multiple cores

– Invert the 90/10 rule: 90% active, 10% passive

– Slower clock speed: decrease heat with comparable or higher problem throughput as
single core processor

– SWAP improvements: hibernate idle cores (power management), shift workload
between cores (thermal management)
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Multicore Taxonomy:
Homogeneous vs. Heterogeneous

• Homogeneous multicore

– “The Traditional Approach”: duplicate 
execution units as needed

– Intel/AMD dual core, quad core

– Sun UltraSparc T1, T2 (aka Niagara, Niagara 
II)

• Heterogeneous multicore

– General-purpose and special-purpose
elements

– General-Purpose GPU computing

– STI Cell Broadband Engine

– MIT RAW and USC/ISI MONARCH
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General-Purpose GPU Computing

• Started as an effort to compute game physics between frames

• Harnesses the GPU’s SIMD stream processing on matrices

– NVIDIA nv40, G70: 24 and 32 parallel floating point units

– AMD/ATI Radeon X1K: 48 parallel FP units

• GPU code generally outperforms CPU code by 2-4x

• Delivers higher GFLOPS/W compared to uniprocessors

– nVidia nv40 @ 400 Mhz ⇑ 0.55 GFLOPS/W

– Intel x86_64 @ 3 GHz ⇑ 0.11 GFLOPS/W (approx.)

• Reasonably cost effective upgrade, ~$300
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GPGPU Application Areas

• Linear algebra acceleration

– LU decomposition

– Matrix multiplication

• Signal processing

– FIR filters

– Autocorrelation filters

• Scientific computing

– FEM, ODE, PDE solvers

– Navier-Stokes solvers

• Database “SELECT” query processing

• GPU-accelerated Folding@Home

• Not particularly good at FFTs
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GPGPU Software Development Challenges

• Mapping graphics idioms to the problem

– Shader languages are designed for graphics, not scientific 
computing

– Many shader languages to choose from…

• Single precision floating point

– Truncates results, no IEEE rounding: Numerical drift

– Iterative refinement for error compensation: Double precision 
computation on CPU, feed error correction to GPU

• No double precision floating point

• No arbitrary array or matrix accesses: Reformat data to GPU-
friendly format

• Slow GPU-to-CPU result upload: Keep computation on GPU for as 
long as possible
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A Trivial GPGPU Performance Benchmark:
ynew = yold + alpha x (saxpy)

• CPU (3.2 GHz AMD x86-64)

– Tests execution speed, cache/memory throughput

– cpubench-gcc: “-O3 -Os -funroll-loops”

– cpubench-u16: 16x hand-unrolled loop

• GPU

– Tests parallelism, texture memory throughput

– Execution only: render/execute only

• Problem size: 32 ≤ x ≤ 1048576 (6x6 to 1024x1024 texture sizes), 
step size 4681

• Iterated test at each sample point 300x for statistical significance
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GPU vs. CPU: MFLOPS comparis
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STI Cell Broadband Engine

• Sony/Toshiba/IBM co-designed, co-developed 
processor

• Heterogeneous multicore technology

– PowerPC-64 Primary Processor Element

– 8x Symbiotic Processor Elements (SPEs)

– Vector processor units, based on VMX 
instruction set

– 256 GFLOPS peak, single precision FP

– 26 GFLOPS peak, double precision FP

– 2.2 GFLOPS/W

• Playstation 3’s processor

• LANL “RoadRunner”: 8,000 Cell-based nodes out of 
16,000 total nodes
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Reactions to Cell…

• You either love it or hate it!

• “Developers are forced to sweat bullets to take advantage of the Cell 
Platform” -John Carmack, ID Software

• “[Software developers] are tearing their hair out over multi-core” -
Tom Halfhill, Microprocessor Report

• Valve’s Steve Bond isn’t particularly impressed, efforts focused on 
consumer Intel/AMD multicore

• “What's so hard about doing non-graphics programming on a GPU?”
- John Stokes, Ars Technica

In a blog entry on another site that links O'Sullivan's post approvingly, parallel 
programming researcher Michael Suess reports that a student of his who worked 
on both Cell and CUDA found Cell to be much easier.

• “[The Cell’s] architecture is very well suited toward running a game 
and not terribly suited toward running a desktop computer” -Alex 
Hastings, Insomniac Games (IEEE Spectrum, Dec. 2006). 
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Cell BE Software Development Challenges

• Software tool ecosystem is evolving…

– Programming using GCC intrinsics: Glorified assembly language

– Cell SDK has a lot of code, but is it just a starting point for ideas?

• 256K Local Store: All code + data in a compact space

– Message orchestration: Get the next tile, work unit into LS when
it’s needed, reassemble results on PPE

– Double buffering: Hides latency, cuts available LS memory

– Data orchestration: Get the data into a SIMD-friendly format, 
arrays of structures vs. structures of arrays, avoid accessing
singletons (“unaligned”) data

• Not dissimilar to GPGPU software development, but maybe a little
easier
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Sun UltraSparc T1 and T2

• Originally code named “Niagara”

• 4, 6 and 8 core flavors

• Architecturally designed for thread-heavy 
applications: 8 cores x 4 threads/core

• UltraSparc T1 is not designed for numeric 
applications, has one shared floating point 
unit

• UltraSparc T2 enhances numeric 
capabilities, thread execution

• Runs existing code

• “Thundering herd” lock contention problem 
requires minor software redesign
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Accelerators

• ClearSpeed Advance

– Primary market: high performance technical computing, 
floating point computation

• Aegia PHYSX physics accelerator

– Initial market: compute physics during game play

– Branching out to the HPC market… stay tuned…

• FGPAs and reconfigurable computing
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MONARCH:
John Granaki, USC/ISI
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Part II

A Look At The Software Ecosystem
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Common Issues:
Vectorization and Parallelization

• 4-element <x, y, z, w> is the most common: SSE2/3, Altivec, GPU, Cell

• Structures of Arrays

– Operates on multiple elements together

– Example: multiply-add (saxpy)

• Arrays of Structures

– Treats vector components individually

– Example: Comparison to constant, filtering data

• Primary effort is data refactoring

– Sometimes it’s OK to take this hit when data isn’t organized as a 
stride-1 array of vectors -- YMMV…

– Shuffle/permute primitives reformat individual vectors

– Lots of algorithm literature from Cray, late 80’s and early 90’s 
research to rely on and resurrect…
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SIMD Structure of Arrays

x1 x2 x3 x4

y1 y2 y3 y4

x1+y1 x2+y2 x3+y3 x4+y4

z1 z2 z3 z4

z1*a1 z2*a2 z3*a3 z4*a4

<a1, a2, a3, a4>
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SIMD Array Of Structures

x y z w

c c c c

x==c y==c z==c w==c

0/1 0/1 0/1 0/1
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GPGPU Software Tools

• Major Players: RapidMind and Peakstream

• RapidMind

– Startup by Mike McCool and graduate students, U. Waterloo.

– Outgrowth from fragment shader language research (libsh)

– Embedded functional language, just-in-time compilation to 
host’s GPU

• Peakstream

– C++ software library, classes and their operators structure 
the computation

– Just-in-time compilation to proprietary virtual machine, 
excellent debugging facilities

– Platform-limited: Linux and AMD Stream processor
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Hardware Vendor GPGPU Software Tools

• AMD/ATI CTM (“Close To the Metal”)

– Designed to be general-purpose from the ground up, works
with X1K GPUs, AMD Stream processor

– Been around for approx. one year

• NVIDIA CUDA

– NVIDIA’s relatively new general-purpose GPU programming 
toolkit

– Targeted to G70 GPU line

• Competition between the major GPU vendors can only improve 
their respective toolkit offerings
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Cell BE Software Tools

• Currently, very primitive and rapidly evolving
• Cell SDK v1 and v2

– gcc 3.3 has limited autovectorization, improved in 4.2 and 4.3 but 
hand-rolled is generally better

– SDK libraries and code: a good idea launch pad
– SDK v2 program chaining: data stays in place, keeps SPU busier

• IBM efforts:
– Contracted ports of VSIPL/VSIPL++ and other libraries
– xlC/C++ compilers: research versions have advanced optimizers, 

OpenMP support, not in general availability (yet)
• RapidMind generates code targeted to Cell
• Mercury Computer Systems offers their own version of a Cell SDK
• Message orchestration, SPU buffer and memory management is the 

developer’s problem
– Remember the Apple ][ and TRS-80s?
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Selected Multicore Research Areas

• Software Transactional Memory (STM)

– Memory regions with acquire, operate, commit and rollback 
semantics; nested transactions

– Controversial: Is STM feasible? Is STM really deadlock avoiding or 
lock-free? How heavy are transactions? Is STM really the right 
paradigm? How does a STM transaction recover?

• Parallelizing, autovectorizing compiler research and languages

– Interpreted languages, virtual machines are easier to transform

– Explicit vs. implicit parallelism in a language: Is explicit necessary?

– Important to see the high-level sequence of operations and 
recognize patterns, e.g., matrix multiply, and combine operations

– Functional languages making a comeback?

• Re-evolution vs. revolution and evolution: lots of work done in the 80’s 
and early 90’s in multi-processor systems
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Part III

Acquisition and Program Issues
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Technology Refresh:
It’s Inevitable

• Long timeline programs don’t like moving targets but want to leverage 
new capabilities

• GPU: Low-to-medium short-term risk
– Cost effective: $300 - $500 hardware upgrade
– Software recode required, but performance payoff is 2x - 4x better 

than uniprocessor, numerical convergence issues
• Cell: Medium-to-high short-term risk

– PS-3 hardware relatively cost effective, IBM QS20 cluster and 
Mercury blades are investments

– Developing immature software ecosystem, but with potentially high 
performance gains in single precision FP, numerical convergence 
issues

– Incrementally migrate functionality to Cell SPUs (LANL approach)
• UltraSparc T1, Intel/AMD Duo and Quad core: Low short term risk

– Highly threaded applications see most benefit
– Runs existing code
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Concept Stage Programs

• GPU: Low-to-medium risk

– NVIDIA and AMD/ATI recognize a marketplace. compete with 
Cell and other multicore technologies

– Toolkits will evolve, less management burden on developer

• Cell: Low-to-medium risk

– Software ecosystem evolving and will stabilize

– Leverage today’s graphics fragment shader expertise to 
bootstrap efforts, develop in-house expertise

– Encourage multiple versions of code, benchmark, develop 
“rules of thumb”

• UltraSparc T1, Intel/AMD Duo and Quad core: Low risk



31

Resources
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Selected Resources

GPGPU:

http:// www.gpgpu.org: GPGPU resources

http://www.gpgpu.org/sc2006/workshop: SC’06 workshop

http://ati.amd.com/companyinfo/researcher/documents.html: 
AMD/ATI CTM document library

http://developer.nvidia.com/object/cuda.html: NVIDIA CUDA 
home page

Cell BE:

http://www.ibm.com/developerworks/power/cell/: IBM’s Cell 
developer resources

MONARCH: John Granaki (granaki@isi.edu)

Me: scottm@aero.org


