Mission Operations Services by the CCSDS: a step towards the future

CCSDS Spacecraft Monitor & Control Working Group (SM&C)
Mario Merri (ESA), Chair
Presentation Motivations and Agenda

□ Communicate and promote our standardisation effort
 ➔ Share SM&C approach with decision makers for future missions
 ➔ Dissipate unjustified fears (e.g. re-use of legacy systems, pre-defined system architecture, prescribed functionalities)
 ➔ Share benefits of application-level services and not only communication protocol standardisation

□ Agenda covers main SM&C WG responsibility, i.e. standardisation in the context of:
 ➔ Spacecraft Monitoring & Control (SM&C)
 ➔ Status, strategy and outlook
 ➔ Overview
 ➔ Prototype
 ➔ XML Telemetric and Command Exchange (XTCE)
 ➔ Very brief status and outlook
SM&C in Numbers

3 year lifetime
(started in Dec 2003)
10 active Space Agencies
1 partner standardization organization
7 CCSDS workshops
40 telecons

ASl: C Labonia
BNSC: R Thompson (deputy chairman), B Harnett
CNES: B Béhal, E Poupard, R Soumagne
CSA: P Melanson
DLR: H Hoffman
ESA: M Merri (chair), M Schmidt, A Ercolani, I Dankiewicz, S Cooper
FSA: L Kudrin
INPE: PG Milani, AM Ambrosio
JAXA: T Yamada
NASA/ GSFC: DC Lokerson, F Johnson, JK Marguart, JS Gal-Edd, C Fatig, R Jones, K Rice
NASA/ JPL: A Oyake, P Shames, J Moholt
OMG: G Simon (Lockheed Martin), B Kizzort (Harris Corp.)
SM&C in Numbers

- 3 year lifetime (started in Dec 2003)
- 10 active Space Agencies
- 1 partner standardization organization
- 7 CCSDS workshops
- 40 telecons
- 2 published GBs
- 2 Agencies Reviews (XTCE)
- 2 internal Reviews (SM&C)
- 3 advanced draft HP SM&C RBs

- Mission Operations Service Concept, CCSDS 520.0-G-2, August 2006
 - http://public.ccsds.org/publications/archive/520x0g2.pdf
 - Web hits: 158 in Feb 06; 259 in Jan 07

- XML TELEMETRIC AND COMMAND EXCHANGE (XTCE), CCSDS 660.0-G-1, July 2006
 - http://public.ccsds.org/publications/archive/660x0g1.pdf
 - Web hits: 303 in Feb 07; 445 in Jan 07

- SM&C Message Abstraction Layer (ESA)
- SM&C Common Service (ESA)
- SM&C Core Service (ESA)
SM&C in Numbers

3 year lifetime (started in Dec 2003)
10 active Space Agencies
1 partner standardization organization
7 CCSDS workshops
40 telecons
2 published GBs
2 Agencies Reviews (XTCE)
2 internal Reviews (SM&C)
3 advanced draft HP SM&C RBs
2 versions of SM&C prototype
1 advanced draft XTCE MB
SM&C in Numbers

3 year lifetime
(started in Dec 2003)
10 active Space Agencies
1 partner standardization organization
7 CCSDS workshops
40 telecons
2 published GBs
2 Agencies Reviews (XTCE)
2 internal Reviews (SM&C)
3 advanced draft HP SM&C RBs
2 versions of SM&C prototype
1 advanced draft XTCE MB
4 initial draft SM&C RBs

- SM&C Time Service (CSA)
- SM&C Remote Software Management (BNSC)
- SM&C Automation Service (CNES)
- SM&C Planning Service (BNSC)

27 Mar 2007
Mission Operations Services by the CCSDS: a step towards the future
Spacecraft Monitoring and Control

- **What it is**
 - Comprises application level services that are needed to monitor, control and operate a remote system including:
 - Classical TM monitoring
 - TC generation (manual, pre-planned, automatic, time-tagged, …)
 - Remote software management
 - Time management
 - Mission product data management
 - Mission planning and automation
 - Orbit, Attitude and Position determination
 - Standard interaction with the operator
 - … more to come

- **What it is not**
 - Does not prescribe the system architecture and functionality
 - service provider/consumer may be located differently depending on the specific deployment
 - No predefinition of applications’ implementation, but only of their management interfaces
 - Does not prescribe the technology to be used

- **Must allow expansion to accommodate future needs**

27 Mar 2007
Mission Operations Services by the CCSDS: a step towards the future
What Do we Want to Achieve?

- **Prepare for the future**
 - Future missions will be more complex and require more collaboration across organisations
 - Better interoperability between systems (e.g. X monitoring its lander via Y’s orbiter, Z submitting planning requests for its payload on W’s S/C, ...)
 - Scalability
 - Expandable systems
 - Difficult to predict now what will be needed tomorrow
 - Protect from technology evolution
 - Replace implementation technology without major system redesign

- **Reduce cost (i.e. schedule, risks, ...) of**
 - [On-board and Ground-based] system development
 - Facilitate availability of generic software infrastructure
 - Facilitate availability of new, state-of-the-art, plug-in [commercial] components
 - Re-use components (including legacy systems)
 - ... and mission operations
 - Re-use operational concepts across missions
 - Increase operational commonality across components (less training costs)
How Can Standardisation Help?

- **Standardisation of interfaces for SM&C**
 - Reduce cost of Flight Components and Ground Segment Infrastructure
 - Enable “plug and play” architecture with components from different Agencies, systems and suppliers

- **SM&C Framework technology keywords**
 - Service Oriented Architecture
 - Plug & Play
 - Layering
 - Isolation and Grouping of generic and common services
 - Publish/Subscribe
 - Technology Adapters (e.g. integration of legacy systems)
Why Application-Level Service Standardisation?

- **Protocol-Level standardisation**
 - is necessary (allows communication), but not sufficient for seamless plug-in of components and interoperability
 - some commercial world examples:
 - Bluetooth/Infrared
 - USB
 - Internet (HTTP and TCP/IP)

- **Application-Level service standardisation**
 - allows seamless plug-in of components and interoperability
 - Examples
 - Calendar/Contacts/To do List/… management
 - Plug & Play of modern memory sticks
 - e.g. tailor-made holidays package (Expedia, LastMinutes, …)
Integrated Systems vs. Modular Components
Service-Oriented Architecture: Plug-in Components
Benefits of the SOA Approach

- Components exchangeable for others supporting same Service Interfaces
 - Plug-and-play interoperability of MCS components

- Common Service Framework
 - Re-use of common infrastructure across multiple systems
 - Independence of mission configuration data and history from system implementation

- Infrastructure Implementation can be changed without change to core Applications
 - Independence of core application software from underlying implementation technology – platform and communications

- Components rapidly deployable in different combinations
 - Reduced mission-specific deployment costs

- Extensible: easy to add new components
 - Scope to evolve a system, by replacing components or changing underlying technologies

- Success is dependent on the Granularity of the service architecture selected
End-to-End Services and Layering
SM&C Service Layering (a)

MO Domain Specific Applications

SM&C: Mission Operations Services

SM&C: Message Abstraction Layer
Message Exchange; File Transfer; Mail

SM&C: Common Services

Technology Adaptors

Infrastructure Services
Message Exchange; File Transfer; Mail

Communications Services

Interoperable Protocol (PDUs)
Identified SM&C MO Services

<table>
<thead>
<tr>
<th>Name</th>
<th>Service Objects and Operations</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Monitoring & Control</td>
<td>Parameters: publish status; set Actions [Commands]: publish status; invoke/send Alerts [Events]: notify; raise</td>
<td>1</td>
</tr>
<tr>
<td>Time</td>
<td>Time: report; set; correlate; notify</td>
<td>2</td>
</tr>
<tr>
<td>Software Management</td>
<td>On-board Software: load; dump</td>
<td>2</td>
</tr>
<tr>
<td>Planning Request</td>
<td>Planning Request/Goal: request; response</td>
<td>3</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Schedule: distribute; edit; control; progress reporting</td>
<td>3</td>
</tr>
<tr>
<td>Automation</td>
<td>Procedure/Function: control; progress reporting</td>
<td>2</td>
</tr>
<tr>
<td>Data Product Management</td>
<td>Data Product [Payload Data File]: directory; transfer</td>
<td>3</td>
</tr>
<tr>
<td>Location</td>
<td>Position: tracking, ranging, onboard positioning</td>
<td>3</td>
</tr>
<tr>
<td>Flight Dynamics</td>
<td>Orbit/Attitude/Predicted Events: determination, propagation, manoeuvre preparation</td>
<td>4</td>
</tr>
<tr>
<td>Operator Interaction</td>
<td>Message/Alarm/Query: notify; operator response</td>
<td>4</td>
</tr>
<tr>
<td>Remote Buffer Management</td>
<td>Buffer: catalogue; retrieve; clear</td>
<td>4</td>
</tr>
</tbody>
</table>
SM&C Common Services

MO Service Consumer

MO Service Directory

Common Services Directory
Authentication
Session Control

LOOKUP

PUBLISH

INVOKE

27 Mar 2007
Mission Operations Services by the CCSDS: a step towards the future
SM&C Service Layering (b)

MO Domain Specific Applications

Consumer Application

Provider Application

Plug-in Applications

SM&C: Mission Operations Services

SM&C: Common Services

SM&C: Message Abstraction Layer

Message Exchange; File Transfer; Mail

Technology Adaptors

SM&C: Message Abstraction Layer

Infrastructure Services

Message Exchange; File Transfer; Mail

Technology Specific Infrastructure

Communications Services

Interoperable Protocol (PDUs)
Message Abstraction Layer (1)

- **Generic Interaction Patterns (IP)**
 - limited set used by MO services in the SM&C framework
 - Each operation of a service uses one IP

![Diagram of SEND IP](show/diagram.png)

SEND IP

![Diagram of PROGRESS IP](show/diagram.png)

PROGRESS IP
Message Abstraction Layer (2)

- Generic Interaction Patterns (IP)

- Other features:
 - Multiplicity of services (Session, Domain, Network Zone)
 - Security and access control
 - Quality of Service

27 Mar 2007
Mission Operations Services by the CCSDS: a step towards the future
Message Abstraction Layer (3)

- Interoperability (language and encoding/transport)

![Diagram of Message Abstraction Layer (3)]

27 Mar 2007
Mission Operations Services by the CCSDS: a step towards the future
SM&C CCSDS Books

Mission Operations Services by the CCSDS: a step towards the future

27 Mar 2007
Conclusions and Outlook

- The Mission Operations Services will provide a framework for development of
 - Interoperable systems (across and within Agencies)
 - Re-usable components
 - Systems-of-Systems

- At the last CCSDS workshop (Jan 07), NASA agreed to increase support to the SM&C effort while continuing to identify the candidate enabling technologies for the future Constellation Programme

- Target plan
 - SM&C Message Abstraction Layer - end 2007
 - SM&C Common Service - Q2/2008
 - SM&C Core Service - Q2/2008