Working Group 4A
Architecture-Centric Evolution (ACE) of Software-Intensive Systems

Chairs
Dr. Sergio Alvarado
Sheri Benator
Dr. Phillip Schmidt
The Aerospace Corporation
ACE Working Group Goals

- Fifth of a GSAW series
 - Promote the central role of software architectures during the acquisition & development of software-intensive systems

- Forum for software-intensive system experts, users, developers & researchers
 - Collaborate and elucidate high-level recommendations for improving software architectures representation, development & design

- Presentations & panel discussion
ACE Invited Panelists

• Acquisition and Oversight Perspective
 - Peter Capell, Software Engineering Institute
 - Dr. Peter Hantos, The Aerospace Corporation

• Development Perspective
 - Richard Anthony, General Dynamics C4 Systems
 - Sean Kelly, Lockheed Martin, IS&GS

• Research and Tools Perspective
 - Dr. Hans-Peter Hoffman, Telelogic
 - Dr. Azad Madni, Intelligent Systems Technology, Inc.
 - Dr. Kathryn Weiss, Jet Propulsion Laboratory

• Moderator
 - Dr. Sergio Alvarado and Sheri Benator, The Aerospace Corporation
Key Points - 1

• Architecture Representation
 - UML provides a common stakeholder language
 - Best practices are needed for its use in domain-specific areas
 - Communication with meta-models is an important area of research
 - Strong software architecture-centric perspective is still new for satellite systems
 - JPL is developing architecture-centric guidance and tools for coherent architectural design
 - Key to managing complex, large-scale SW systems is to distinguish between buildtime (logical components) and runtime (deployed components) views
 - Front-end conceptual analysis is needed to understand how to select, extend, and apply tools and modeling languages
 - Use views and modeling that apply to the problem at hand
 - System architecture approach was provided using SysML and leading directly into software architecture
 - Telelogic’s Harmony is a tool-independent model driven process
 - Although SysML is being applied by some organizations, it has not been fully adopted by hardware engineers
 - Tools are evolving to better support architecture needs
 - UML tool vendors working on supporting model transformation capabilities
Key Points - 2

• **Architecture Analysis**
 - Front-end analysis needed to define quality attributes and follow-on assessment needed to determine how well they are being met
 - Architecture Tradeoff Analysis elicits, prioritizes, trades-off quality requirements
 - QUASAR assesses the quality attributes of system and subsystem architectures
 - Quality assessments of system/subsystem architectures not currently written into development contracts, but implemented as best practices
 - Architectural complexity should be analyzed
 - There is a difference between problem complexity (which cannot be removed) and solution complexity (which can be reduced)

• **Organizational considerations**
 - In large programs with prime and many subs at CMMI level 5 it is unlikely that a single melded methodology can be achieved
 - Need practices to integrate/interact with disparate methods, products, tools
 - Focus on integrating products of disparate methodologies
 - Yet on one presented multi-organizational program, common process and architecture methodology with modifications where warranted led to success
 - Need for system engineering and software engineering to work together in addressing cross-cutting architecture concerns
 - Sub-contract the problem ownership and coordinate via Integrated Product Teams
Conclusions

- Organizations need to define their software development and analysis practices within the context of:
 - Problem complexity
 - Multi-organizational teams
 - Quality assessment techniques
 - Multiple and evolving architecture methodologies, modeling languages, tools, and standards