

Working Group 4A Architecture-Centric Evolution (ACE) of Software-Intensive Systems

Chairs Dr. Sergio Alvarado Sheri Benator Dr. Phillip Schmidt The Aerospace Corporation

© 2007 The Aerospace Corporation. All Rights Reserved.

ACE Working Group Goals

• Fifth of a GSAW series

- Promote the central role of software architectures during the acquisition & development of software-intensive systems
- Forum for software-intensive system experts, users, developers & researchers
 - Collaborate and elucidate high-level recommendations for improving software architectures representation, development & design

Presentations & panel discussion

Methodologies, Tools, Techniques, & Practices for Analyzing Architectures for Software-Intensive Systems

ACE Invited Panelists

- Acquisition and Oversight Perspective
 - Peter Capell, Software Engineering Institute
 - Dr. Peter Hantos, The Aerospace Corporation

Development Perspective

- Richard Anthony, General Dynamics C4 Systems
- Sean Kelly, Lockheed Martin, IS&GS

• Research and Tools Perspective

- Dr. Hans-Peter Hoffman, Telelogic
- Dr. Azad Madni, Intelligent Systems Technology, Inc.
- Dr. Kathryn Weiss, Jet Propulsion Laboratory

Moderator

Dr. Sergio Alvarado and Sheri Benator, The Aerospace Corporation

Key Points - 1

Architecture Representation

- UML provides a common stakeholder language
 - Best practices are needed for its use in domain-specific areas
 - Communication with meta-models is an important area of research
- Strong software architecture-centric perspective is still new for satellite systems
 - JPL is developing architecture-centric guidance and tools for coherent architectural design
- Key to managing complex, large-scale SW systems is to distinguish between buildtime (logical components) and runtime (deployed components) views
- Front-end conceptual analysis is needed to understand how to select, extend, and apply tools and modeling languages
 - Use views and modeling that apply to the problem at hand
- System architecture approach was provided using SysML and leading directly into software architecture
 - Telelogic's Harmony is a tool-independent model driven process
- Although SysML is being applied by some organizations, it has not been fully adopted by hardware engineers
- Tools are evolving to better support architecture needs
 - UML tool vendors working on supporting model transformation capabilities

Key Points - 2

• Architecture Analysis

- Front-end analysis needed to define quality attributes and follow-on assessment needed to determine how well they are being met
 - Architecture Tradeoff Analysis elicits, prioritizes, trades-off quality requirements
 - QUASAR assesses the quality attributes of system and subsystem architectures
- Quality assessments of system/subsystem architectures not currently written into development contracts, but implemented as best practices
- Architectural complexity should be analyzed
 - There is a difference between problem complexity (which cannot be removed) and solution complexity (which can be reduced)

Organizational considerations

- In large programs with prime and many subs at CMMI level 5 it is unlikely that a single melded methodology can be achieved
 - Need practices to integrate/interact with disparate methods, products, tools
 - Focus on integrating products of disparate methodologies
 - Yet on one presented multi-organizational program, common process and architecture methodology with modifications where warranted led to success
- Need for system engineering and software engineering to work together in addressing cross-cutting architecture concerns
 - Sub-contract the problem ownership and coordinate via Integrated Product Teams

Conclusions

- Organizations need to define their software development and analysis practices within the context of
 - Problem complexity
 - Multi-organizational teams
 - Quality assessment techniques
 - Multiple and evolving architecture methodologies, modeling languages, tools, and standards

