Cost Estimation for Secure Software & Systems Workshop Introduction

Edward Colbert, Sr. Research Associate Dr. Barry Boehm, Director

Center for System & Software Engineering

{ecolbert, boehm}@csse.usc.edu http://csse.usc.edu

Ground Station Architecture Workshop (GSA)

© 2002-7 USC-CSSE 1 30 April 2007

Goal Of Presentation

- □ Review Research
 - Draft model for early costing of system security
 - Extensions to COCOMO II for development of secure software systems ("COSECMO")
- □ Invite
 - Expert opinion
 - Data (Collection)

© 2002-5 USC-CSE 2 30 April 2007

U.S. Federal Aviation Administration Needs

- □ U.S. Congressional & Congressional Office of Management & Budget (OMB) requires each U.S. agency to plan & budget for security throughout life—cycle of system
- ☐ July '03, FAA CTO asked USC CSSE to research cost estimation for secure systems
 - -Completing 3rd phase

© 2002-7 USC-CSSE 30 April 2007

Estimating Cost for Secure Software–Intensive Systems

- Widely held that engineering security will substantially raise software—project cost
- Wide variation in amount of added cost estimated by different models
 - e.g.
 - [Bisignani and Reed 1988] estimates engineering highly–secure software will increase costs by factor of 8
 - 1990's Softcost-R model estimates factor of 3.43 [Reifer 2002]
- Models based on 1985 "Orange Book"

DoD Standard 5200.28-STD, Trusted Computer System Evaluation
 Criteria [National Computer Security Center 1985]

© 2002-5 USC-CSE 4 30 April 2007

EC1

Slide 4

Name & reference Ed Colbert, 12/7/2005 EC1

Estimating Software Cost

- ☐ 1981 Constructive Cost Model (COCOMO)
 - 80 projects
 - Developed by Dr. Barry Boehm
- 2000 COCOMO II
 - 160+ projects
 - (now about 200 in database)
 - Authors
 - Dr. Boehm (USC CSSE)
 - A. Winsor Brown (USC CSSE)
 - Dr. Chris Abts (Univ. of Texas) *
 - Dr. Sunita Chulani (IBM)*
 - Dr. Brad Clark (Software Metrics, Inc.)*
 - Dr. Elis Horowitz (USC CSSE)
 - Dr. Ray Madachy (CostPlus, USC CSSE)*
 - Don Reifer (Reifer Consultants, Inc.)
 - Dr. Bert Steece (USC Marshall School of Business)

* Dr. Boehm's Ph.D. Student

COCOMO I/II is basis of many commercial products

- I Dr. Barry Boehm
 - Director, USC Center for Software Engineering (USC CSSE)
 - Author of Software Engineering Economics
 - · Seminal work on topic
 - Lead author of Software Cost Estimation and COCOMO II
 - Creator of Spiral Model
 - Former Director of Defense Advanced
 Research Product Agency (DARPA)
 Information Science & Technology Office

© 2002-7 USC-CSSE 6 30 April 2007

COCOMO II & Security

Effort Multipliers (EM): Software product, process, project & personnel cost drivers

Project Scale Factors (SF): maturity, risk, flexibility, teamwork

& precedentedness

Software organization's project data

COCOMO II Model Effort & duration estimates

Cost, schedule distribution by phase, activity, increment

COCOMO II recalibrated to organization's data

Effort in Person Month

$$E_{base-estimate} = A * (Size)^{S} * \Pi(EM_i)$$

 $S = B + 0.01 * \Sigma(SFi)$

© 2002-7 USC-CSSE 7 30 April 2007

COCOMO II Modeling Methodology

- Analyzed
 - Published industry practices with respect to security inc. standards like Common Criteria
 - 149 Security Targets registered on National Information Assurance Partnership (NIAP) Website
 - SAR's & FAR Usage
 - Overall
 - By
 - » Project Domain
 - » Life-cycle phase
 - » Security goals
 - » COCOMO driver

Conducted preliminary surveys of experts in SW development & in security

30 April 2007

COCOMO Estimation with Security

%Effort(EAL) = %Effort₃ * SECU (EAL
$$-3$$
) for EAL $>= 3$
= 0 for EAL < 3

Effort(Internal Assurance) = Effort(Base) * %Effort(EAL)

Effort(Total) = Effort(Base) + Effort(Internal Assurance)

+ Effort(Independent Assurance)

where:

SECU — Calibration constant

EAL — Evaluated Assurance Level or (Equivalent)

Effort(Base) — Result from basic COCOMO II formula

Effort(Internal Assurance) — Effort of developer to verify that security requirements are met

%Effort₃ — Percent add effort at level 3 (see table next page)

%Added Effort — Percent added effort for desired AL

Effort(Independent Assurance) — Effort of independent organization's effort to verify that security requirements are met.

© 2002-7 USC-CSSE 10 30 April 2007

COCOMO Estimation with Security (cont.) %Added Effort when SECU = 2.5

System Size (KSLOCS)	Assurance Level					
	Nominal	High	Very-High	Extremely- High	Super-High	Ultra-High
5	0	20	50	125	312	781
10	0	40	100	250	625	1560
100	0	60	150	375	937	2344
1000	0	80	200	500	1250	3125

- Level names are COCOMO standard + 2
 - Mapping currently from Common Criteria v2
 - Nominal=1 or 2, High=3, Ultra=7
 - For 3+, Reliability = Very-High
 - Working on other mappings (e.g. NIST 800-52, DoD 8500, Orange Book)
- Values are based on survey of small group of experts
- Published data points fit reasonably
 - Only a few data points

COCOMO Estimation with Security (cont.) %Added Effort

☐ What's your opinion?

© 2002-7 USC-CSSE 12 30 April 2007

Example of COCOMO Estimation with Security

Assume:

Reliability = Very-High

All other drivers = Nominal

Trusted SW = 5 KSLOC

If Assurance = Nominal (EAL 1 or 2)

Effort(Total)

= 21.75 person-months

If Assurance = Very-High (EAL 4)

Effort(Internal Assurance) = 21.75 * 50% = 10.88 person-months

Effort(Total) = 21.75 + 10.88 = 32.63 person-months

If Assurance = Ultra-High (EAL 7)

Effort(Internal Assurance) = 21.75 * 780% = 169.62 person-months

Effort(Total) = 21.75 + 10.88 = 191.37 person-months

© 2002-7 USC-CSSE 13 30 April 2007

Formula for Cost of System & Security

$$C_{total}$$
 (Security) = C_{total} (with security) – C_{total} (without security)

$$C = Cost$$

© 2002-7 USC-CSSE 14 30 April 2007

Cost Model for Secure System Approach

- Analyzed Work-breakdown Structure (WBS)
 - Identified activities affected by Security
- Identified major sources of cost
 - To develop & own system
 - Including: facilities, equipment, people, acquired systems, services
- Determine approaches to estimate cost for each source of cost
 - Activity—based (e.g. Labor hours)
 - Unit costing (e.g. # firewalls)
 - Analogy-based (e.g. It cost us \$XXX last year,...)
 - Parametric (e.g. COCOMO II estimate)

© 2002-5 USC-CSE 15 30 April 2007

Developed Prototype Tool Support

- ☐ COSECMO Prototype in COINCOMO
- Cost Drivers Subcomponent Name: SubComponent 1 - Comp 84 · 0 · **CSE** Documentation Match to Life-Cycle Needs (DOCL) H Current COCOMO II Personnel Continuity Language and Tool Experience Cost Drivers % Design Modified (DM): · 0 · % Implementation Modified (IM): • 0• Main Storage Constraint Execution Time Constraint · 0. Security (SECU) VH · 0 · Adjusted KSLOC: 36 Assurance Security Guidelines EAF: 3.84 Level Cost Drivers...
- 4th Prototype Tool Screenshot#1 Total from Cost Sources

To Do

- ☐ Get more feedback from security community
- ☐ Refine models
- ☐ Refine costing prototypes
- ☐ Refine Delphi
- ☐ Collect & analyze data
- ☐ Write papers & Ph.D. thesis (theses?)

© 2002-7 USC-CSSE 17 30 April 2007

Next Costing Secure Systems Workshop

- □ Date: TBD June
 - Also, workshop at fall COCOMO Forum
- ☐ Location: University of Southern California, LA
- ☐ Cost:
 - -TBD (nominal)

© 2002-7 USC-CSSE 18 30 April 2007

In Case You Aren't Sure That Security Is Important

References

Bisignani, M. and Reed, T. (1988). "Software Security Costing Issues", COCOMO Users' Group Meeting Proceedings. Los Angeles: USC Center for Software Engineering.
 Boehm, B. W. (1981). Software Engineering Economics, Prentice—Hall: Englewood Cliffs, NJ
 Boehm, B. W. (1988). "A Spiral Model of Software Development and Enhancement", IEEE Computer. Vol. 21, No. 5 (May): pp. 61–72.
 Boehm, B. W. (1993). "A Spiral Model of Software Development and Enhancement", Software Management, D. J. Reifer ed., Fourth ed., IEEE Computer Society Press: Los Alamitos, CA. p. 120-131
 Boehm, B. W., Abts, C., et al. (2000). Software Cost Estimation with COCOMO II, Prentice—Hall: Englewood Cliffs, NJ
 National Computer Security Center (1985). Trusted Computer System Evaluation Criteria ("Orange Book"), Washington, D.C.
 Reifer, D. (2002). Security: A Rating Concept for COCOMO II. Reifer Consultants, Inc.

© 2002-7 USC-CSSE 20 30 April 2007