Early Software Discipline for Ground Systems: The Incremental Commitment Model

Jo Ann Lane for Barry Boehm
USC Center for Systems and Software Engineering
{jolane,boehm@usc.edu}

GSAW 2007
What is the Incremental Commitment Model (ICM)?

• System development model to respond to the challenges to future projects
 – Adapting with agility to emergent and rapidly changing requirements
 – Concurrently providing high assurance to all of the system’s success-critical stakeholders

• Achieves goals through
 – Involvement of stakeholders in a series of incremental commitment milestone events
 – Stabilizing each increment’s development while accommodating most change in future increments
 – Providing continuous verification and validation
ICM Principles

1. Success-critical stakeholder satisficing
2. Incremental growth of system definition and stakeholder commitment
3,4. Concurrent, iterative system definition and development cycles
 Cycles can be viewed as sequential concurrently-performed phases or spiral growth of system definition
5. Risk-based activity levels and anchor point commitment milestones
Incremental Commitment in Gambling

• **Total Commitment: Roulette**
 – Put your chips on a number
 • Build a single ground control system for 6 diverse satellite systems
 – Wait and see if you win or lose

• **Incremental Commitment: Poker, Blackjack**
 – Put some chips in
 – See your cards, some of others’ cards
 – Decide whether, how much to commit to proceed
Incremental Commitment In Life: Anchor Point Milestones

- Common System/Software stakeholder commitment points
 - Defined in concert with Government, industry organizations
 - Initially coordinated with Rational’s Unified Software Development Process
- Exploration Commitment Review (ECR)
 - Stakeholders’ commitment to support initial system scoping
 - Like dating
- Validation Commitment Review (VCR)
 - Stakeholders’ commitment to support system concept definition and investment analysis
 - Like going steady
- Architecting Commitment Review (ACR)
 - Stakeholders’ commitment to support system architecting
 - Like getting engaged
- Development Commitment Review (DCR)
 - Stakeholders’ commitment to support system development
 - Like getting married
- Incremental Operational Capabilities (OCs)
 - Stakeholders’ commitment to support operations
 - Like having children
The ICM Life Cycle Process: Overview

DoD, General/DoD Milestones

Beginning of Phases (EVADO)

Activities

Phases (EVADO)

<table>
<thead>
<tr>
<th>Phases (EVADO)</th>
<th>Exploration</th>
<th>Valuation</th>
<th>Architecture</th>
<th>Development 1</th>
<th>Development 2</th>
<th>Development 3</th>
<th>Development 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Scoping</td>
<td>Concept Definition, Investment Analysis</td>
<td>System Architecting</td>
<td>Increment 1 Development</td>
<td>Increment 2 Architecting Rebaseline</td>
<td>Increment 1 Operations</td>
<td>Increment 2 Development</td>
<td>Increment 3 Architecting Rebaseline</td>
</tr>
</tbody>
</table>

Evaluation of Evidence of Feasibility to Proceed

<table>
<thead>
<tr>
<th>Evaluation of Evidence of Feasibility to Proceed</th>
<th>Feasibility Rationales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk?</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Risk?</td>
<td>High, but Addressable</td>
</tr>
<tr>
<td>Risk?</td>
<td>Too High, Unaddressable</td>
</tr>
<tr>
<td>Risk?</td>
<td>Negligible</td>
</tr>
<tr>
<td>Risk?</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Risk?</td>
<td>High, but Addressable</td>
</tr>
<tr>
<td>Risk?</td>
<td>Too High, Unaddressable</td>
</tr>
<tr>
<td>Risk?</td>
<td>Negligible</td>
</tr>
<tr>
<td>Risk?</td>
<td>Acceptable</td>
</tr>
<tr>
<td>Risk?</td>
<td>High, but Addressable</td>
</tr>
<tr>
<td>Risk?</td>
<td>Too High, Unaddressable</td>
</tr>
<tr>
<td>Risk?</td>
<td>Negligible</td>
</tr>
</tbody>
</table>

Stakeholder Review and Commitment

Adjust Scope, Priorities, or Discontinue
Pass/Fail Feasibility Rationales

• Evidence provided by developer and validated by independent experts that:
 • If the system is built to the specified architecture, it will
 – Satisfy the requirements: capability, interfaces, level of service, and evolution
 – Support the operational concept
 – Be buildable within the budgets and schedules in the plan
 – Generate a viable return on investment
 – Generate satisfactory outcomes for all of the success-critical stakeholders
 • All major risks resolved or covered by risk management plans
 • Serves as basis for stakeholders’ commitment to proceed
Risk-Driven Scalable Spiral Model: Increment View

- Rapid Change
 - Short Development Increments
 - Foreseeable Change (Plan)
 - Increment N Baseline
- High Assurance
 - Stable Development Increments
- Short, Stabilized Development of Increment N
 - Increment N Transition/O&M
Risk-Driven Scalable Spiral Model: Increment View

- **Rapid Change**
 - Unforeseeable Change (Adapt)
 - Short Development Increments
- **High Assurance**
 - Foreseeable Change (Plan)
 - Stable Development Increments
 - Current V&V Resources
 - Continuous V&V
- **Agile Rebaselining for Future Increments**
 - Future Increment Baselines
- **Short, Stabilized Development of Increment N**
 - Increment N Transition/O&M
 - Deferrals
 - Artifacts
 - Concerns
- **V&V of Increment N**
 - Future V&V Resources
Conclusions

• Current processes not well matched to future challenges
 – Emergent, rapidly changing requirements
 – High assurance of scalable performance and qualities
• Incremental Commitment Model addresses challenges
 – Assurance via evidence-based milestone commitment reviews, stabilized incremental builds with concurrent V&V
 • Evidence shortfalls treated as risks
 – Adaptability via concurrent agile team handling change traffic and providing evidence-based rebaselining of next-increment specifications and plans
 – Use of critical success factor principles: stakeholder satisficing, incremental growth, concurrent engineering, iterative development, risk-based activities and milestones
• Major implications for funding, contracting, career paths