NASA’s Exploration Initiative: Retooling the Approach to Mission Systems

Ground Systems Architecture Workshop 2007

February 28, 2007

JSC/Steve Rader
GSFC/Dan Smith
Exploration’s Constellation Evolution

♦ **Initial ISS Capability**
 - Ares Crew Launch Vehicles (CLV)
 - Orion Crew Exploration Vehicles (CEV)
 - International Space Station (ISS)

♦ **Lunar Sortie & Outpost Buildup**
 - Cargo Launch Vehicles (CaLV)
 - Earth Departure Stage (EDS)
 - Lunar Surface Access Module (LSAM)
 - EVA crewmembers
 - Unpressurized rovers
 - Habitation modules
 - Robotic rovers
 - Power Stations
 - Science instruments
 - Logistics carriers
 - Communications relay satellites terminals
 - Regolith Movers
 - Pressurized rovers
 - In-Situ Resource Units (O2 from Regolith)
Exploration Challenges

♦ Initial ISS Capability
 • Ares Crew Launch Vehicles (CLV)
 • Orion Crew Exploration Vehicles (CEV)
 • International Space Station (ISS)

♦ Lunar Sortie & Outpost Buildup
 • Cargo Launch Vehicles (CaLV)
 • Earth Departure Stage (EDS)
 • Lunar Surface Access Module (LSAM)
 • EVA crewmembers
 • Unpressurized rovers
 • Habitation modules
 • Robotic rovers
 • Power Stations
 • Science instruments
 • Logistics carriers
 • Communications relay satellites terminals
 • Regolith Movers
 • Pressurized rovers
 • In-Situ Resource Units (O2 from Regolith)

♦ Key Challenges for Exploration
 • Ever Growing Complexity
 • Operations Costs
 • Life Cycle Costs
 • Flexibility to Support Broad Scope of Activities

♦ Key Focus Areas
 • Commonality
 • Interoperability
 • Flexibility
 • Evolvability

♦ Retooling Mission Systems
 • Support simultaneous operations of multiple, diverse systems
 • Support increasing automation
 • Support migration of functions from ground to lunar base
C3I Overview
Command, Control, Communications, & Information

♦ Network-Centric Architecture
 • **IP based** network throughout.
 • Leverage wide range of tools, software, hardware, protocols.
 • **Open standards** & established interfaces.
 • Very flexible & extensible.
 • Enables open architecture that can evolve.
 • Requires architecture be established **across all Cx systems**.

Wide area network connections can be via terrestrial infrastructure, umbilical hard-lines, or wireless (RF) links. Systems act as network nodes that route and relay traffic (as in a mesh network).

♦ C3I Approach
 • C3I fundamentally **cuts across all systems** and must function as a “single system” (different from most systems which partition more along physical lines).
 • Historically, communications, networks, command and control, security, and information systems were **designed and developed separately**.
 • Legacy systems optimized for given vehicle/mission vs. Cx systems which must **accommodate multiple systems/vehicles** AND be flexible to exploration style operations.
C3I Overview

♦ Layered approach
 - Isolates change impacts (enabling evolution)
 - Based on industry standards.
 - Includes publish & subscribe messaging framework (enabling plug-n-play applications by establishing well defined data interfaces).

♦ Interoperability
 - Focus on standards and approaches that enable interoperability between systems.
 - Establish small set of interface standards & reduce possible number of interface combinations.
 - Requires interoperability at all layers: communications, networks, security, C2, and information.

Publish & subscribe based framework abstracts communications and inter-application interfaces. It also enforces a consistent data model, any required security, and limited application interfaces.
C3I Interoperability Specification Scope

- Interoperability Specification only deals with the interfaces and protocols at the element interface, NOT the internal (application, API) interfaces.

Note: For future Cx configurations, the C3I architecture will evolve to include increased C2 interoperability.
C3I Architecture Phasing Summary

- **Orion to ISS** (common interfaces)
 - Common communications frequencies, formats, & protocols
 - IP network based command, telemetry, voice, video, and files.
 - Static network routing.

- **Lunar Sortie** (common systems)
 - Common ground control systems based on common C3I Framework and Cmd/Ctrl components (software)
 - Common communications adapter product line
 - Limited dynamic network routing.
 - Limited C3I Framework based flight software.

- **Lunar Outpost** (common adaptive systems)
 - C3I Framework based flight software.
 - Dynamic network routing.
 - Adaptive, demand-driven communications.
 - Disruption/Delay Tolerant Networking (DTN)
Constellation C3I Activities

♦ Constellation C3I Architecture activities are led out of the Computing Systems & Interoperability (CSI) Systems Integration Group as part of the program’s Systems Engineering & Integration team.

- Multi-Center team
- Includes involvement of all projects (Orion Crew Exploration Vehicle (CEV), Ares Crew Launch Vehicle (CLV), etc.)
- Developing products to support architecture buildup
 - Architecture definition
 - Requirements & Standards
 - Ops Concept development
 - Trades & Analysis

♦ Currently working towards the Program SDR.

♦ Work is starting on Lunar Architecture.
Questions?
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>C2</td>
<td>Command and Control</td>
</tr>
<tr>
<td>C3I</td>
<td>Communications, Command, Control and Information</td>
</tr>
<tr>
<td>CaLV</td>
<td>Cargo Launch Vehicle</td>
</tr>
<tr>
<td>CEV</td>
<td>Crew Exploration Vehicle</td>
</tr>
<tr>
<td>CLV</td>
<td>Crew Launch Vehicle</td>
</tr>
<tr>
<td>CMD</td>
<td>Command</td>
</tr>
<tr>
<td>CSI</td>
<td>Computing Systems & Interoperability</td>
</tr>
<tr>
<td>Cx</td>
<td>NASA's Constellation Program</td>
</tr>
<tr>
<td>DTN</td>
<td>Disruption/Delay Tolerant Networking</td>
</tr>
<tr>
<td>EDS</td>
<td>Earth Departure Stage</td>
</tr>
<tr>
<td>EVA</td>
<td>Extra-Vehicular Activity</td>
</tr>
<tr>
<td>GSAW</td>
<td>Ground System Architectures Workshop</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>JSC</td>
<td>Johnson Space Center</td>
</tr>
<tr>
<td>LCC</td>
<td>Launch Control Center</td>
</tr>
<tr>
<td>LSAM</td>
<td>Lunar Surface Access Module</td>
</tr>
<tr>
<td>MCC</td>
<td>Mission Control Center</td>
</tr>
<tr>
<td>MSFC</td>
<td>Marshall Space Flight Center</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>O2</td>
<td>Oxygen</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SCPS</td>
<td>Space Communications Protocol Standards</td>
</tr>
<tr>
<td>SDR</td>
<td>System Design Review</td>
</tr>
<tr>
<td>TLM</td>
<td>Telemetry</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
</tbody>
</table>