Some Performance and Security Findings Relative to a SOA Ground Implementation

March 28, 2007
John Hohwald
SOA Benchmarking

- Benchmarked a variety of vendors
 - IBM Websphere Process Server 6.0.1; IBM Advanced Websphere (Message Broker) 6.0.0 (on AIX 5.3)
 - DataPower XS40 (HW appliance: XML Accelerator and SAML 2.0 Tokens)
 - BEA Aqualogic 2.5 (on SUSE Linux)
 - Oracle ESB Suite 10.1.3.1 (on Windows 2003)

- Prototyped multi-vendor ESB interaction and cross-platform operations
- Enabled legacy C/C++ code with gSOAP 2.7
- .NET and J2EE Interoperability
 - Performance with large messages
 - Security (Multi-Domain)

Installed, configured, and benchmarked ESB products from major SOA vendors
What additional overhead does an ESB carry compared to direct service invocation?
What are the performance limiting factors in using web services?
All major ESB products handle concurrent requests relatively well – some variability due to dynamic “garbage collection”
Implementing a Ground SOA

Comparison of Performance of ESB Products for Single Messages

ESB overhead shows small but increasing overhead as message size increases – compared to direct service invocation
IBM Advanced ESB and DataPower tested with large messages

- 3MB (335 hrs Eph Data) response:
 - 30 seconds
- 6MB (675 hrs Eph Data) response:
 - 75 seconds
- 8.7MB (1080 hrs Eph Data) response:
 - 125 seconds

Real Performance Bottleneck is in SOAP Processing for large messages

- XML Serialization in client + XML De-serialization in server
 - CPU time and memory intensive
- Message Size/Complexity dependent

Additional ESB overhead can handle these size messages...

- But heap size and timeout must be increased
Message Transfer Options

- SOAP
 - Ordinary XML encoded payload document in SOAP envelope
- SOAP with Attachments (SwA)
 - Compound Document Structure
 - MIME Encoding (De-facto usage standard) of attachment information
 - DIME Encoding (Direct Internet Message Encapsulation) largely obsolete
- MTOM (Message Transmission Optimization Mechanism, W3C), XOP (XML-binary Optimized Packaging, W3C)
 - Relatively new standards
- Out-of-Band Transfer
 - E.g., pass URI and use other transfer mechanism (FTP)
 - Places burden of decoding message payload back to the application

Alternatives exist to mitigate performance bottlenecks of XML Serialization/De-serialization with large messages
Web Services Performance Findings

Additional Performance Considerations

- SOAP Encoding Styles
 - RPC/Encoded (Worst Performance)
 - Deprecated and not WS-I compliant
 - RPC/Literal (Middle)
 - Document/Literal Wrapped (Best Performance)
 - Greater user control of parsing
 - Namespace element tagging allows complex datatype validation

Performance Conclusions

- True performance bottlenecks due to XML Serialization and De-serialization of large messages—mitigate via:
 - Alternative transfer mechanisms (e.g. SwA) for XML payload messages > ~ 10 MB
 - SOAP encoding style (Document/Literal)
 - H/W appliance XML Accelerators
- ESB products add modest overhead which increases as message sizes grow
Multi-Domain SOA Security

- Do not confuse Multi-Domain Security with Multi-Level Security (MLS)
- Multi-Level Security implies a single domain with electronic access by one or more individuals not briefed at all security levels (or compartments) for data within the system
 - Typically requires DCID 6/3 PL-4 protection

- Multi-Domain Security implies there are multiple infrastructure domains, managed by different organizations, that may have different requirements and standards
 - Data in each domain may in fact have same set of Classification Level(s), Compartments
 - Key issue is trust: you must trust that your partner’s security implementation is reliable
Web Services and SOA Security: Logical Architecture

Slide 11

User

1. **UID / Password**

Portal

2. **External Service Bus**

3. **WS Gateway / XML Firewall**

4. **WS Trust Service**

5. **Identity Provider (LDAP, AD, etc)**

Internal Service Bus

6. **WS Gateway / XML Firewall**

7. **WS Trust Service**

8. **Identity Provider (LDAP, AD, etc)**

DOMAIN A

DOMAIN B
Web Services and SOA Security: Configuration 1

- Complex and fragile architecture but acceptable performance
- Componentized architecture permits flexibility
- TFIM implementation of WS-Trust and WSSM is still maturing
- Enforcement via WS ESB is proprietary; no security on response
Web Services and SOA Security: Configuration 2

- Simplified and easy to configure; very fast
- Can transform and route messages based on content & policy
- Can sign and encrypt responses
- XML gateway product is proprietary
- Transformations can only be written in XSLT (no custom adaptors)

Security Domain 1:
- Service Client (Horizon) Windows
- Security Domain 1
- DataPower XML Gateway

Security Domain 2:
- Service Provider Windows 2003
- Websphere Product Server ESB Windows 2003
- Tivoli Access Manager AIX
- Security Domain 2
- SAML Token Exchange Across security domains
The two tests are identical (1-72 hours of Ephemeris Generation/Retrieval)

Adding security (DataPower appliance, SAML 2.0 token generation, trust chain, etc.) and dynamic routing did not significantly degrade performance.

Adding security and dynamic routing to service invocation did not dramatically alter performance.
SOAP/XML based web service performance is largely a factor of serialization and de-serialization of XML messages at mediation.

- Size of response is the critical factor in performance analysis: large size (MB range) results in rapid performance degradation.
- Alternative approaches for transferring large messages/files via web services are required and available.
 - Impacts how you should structure your services.

Additional ESB overhead is small compared to message size effect.

- ESB products handle consistent, moderate loads dramatically better than sudden, heavy loads.

SOAP encoding style has an impact: prefer document/literal wrapped.

Practical message size is not changed with the addition of cross-domain security.

- Additional network hops, but small data size exchanges in each.

“A man has got to know his (COTS) limitations.”