

Harmonization of USG Satellite Ground Systems

Larry Ledlow Fairbanks CDA Station, NOAA Office of Satellite Operations

Jason Spindler

SMC, Satellite Control Network Group, US Air Force

Lance Williams

SMC Interoperability Project, Satellite Control Network Contract

Introduction

- GSAW 2006 concluded with a presentation by N. Peccia of ESA on "harmonization" of European ground systems
- Peccia concluded his presentation with the challenge "It would be nice to see such a process [of harmonization] at the USA level"
- This presentation summarizes progress toward harmonization of US government (USG) ground systems

USG General-Purpose Ground Networks

Air Force Satellite Control Network

- 8 remote sites worldwide
- 1800 MHz (L-band) uplink, 2000 MHz (S-band) downlink

Naval Satellite Control Network

- 3 remote sites in California, Maine, Guam
- L-band uplink, S-band downlink

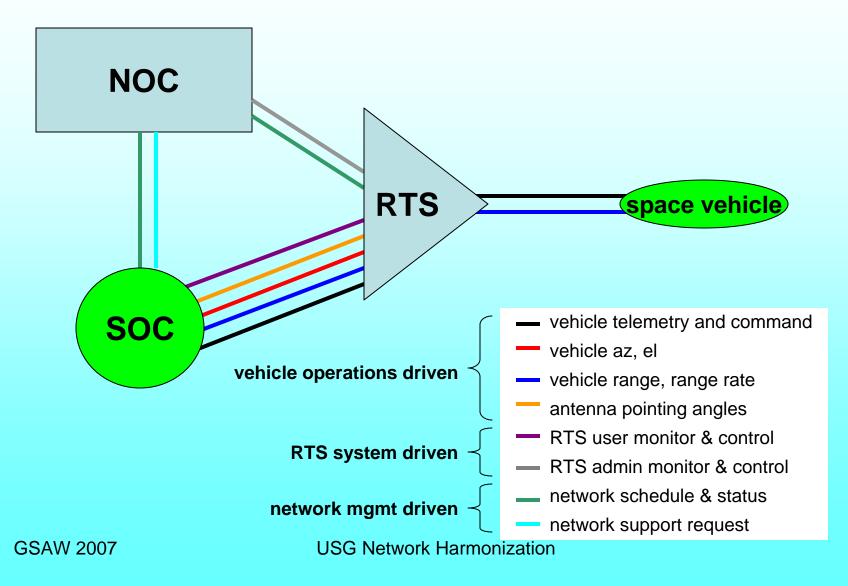
NASA Deep Space Network

- 3 remote sites in California, Spain, Australia
- 24m, 34m, 70m apertures

• NASA Ground Network

- 7 remote sites worldwide
- S-band uplink and downlink, X-band downlink

• NASA Space Network (TDRSS)


- 2 remote sites at White Sands and Guam
- NOAA Ground Network
 - 3 remote sites at Fairbanks, Wallops, and Point Barrow
 - L-band uplink (DMSP/GOES), S-band uplink (POES/GOES), S-band downlink, X-band downlink

USG Network Harmonization

SatOps Transition Plan

- NASA, NOAA, DoD co-signatory to Satellite Operations Architecture Transition Plan, November 2000
- reduce total USG cost by eliminating perceived ground network excess redundancy (without risk to reliability)
- evolve toward single, general purpose, interoperable S-band network for state-ofhealth, launch, early-orbit, anomaly resolution

Interoperable Interfaces

Impediments to Interoperability

- Interface Impediment: lack of common interface definition for operational functions common across networks
 - resolved by adopting common interface or middleware (relatively easy)
- **Operations Impediment**: operational functions not common across networks
 - resolved by adopting common capabilities (relatively hard)

DoD Operations Impediments

- DoD missions employ link-layer encryption on uplink and downlink
- manifestations in AFSCN and NSCN
 - ternary uplink (L-band FSK)
 - artifact of 1960s-era 3-symbol crypto systems
 - telemetry time-tagging at SOC
 - time/data correlation requirement
 - command bit streams
 - time-critical commanding requirement
 - command echoes from RTS
 - mainly for verification of comm to RTS
- also: SOC control of RTS pointing angles

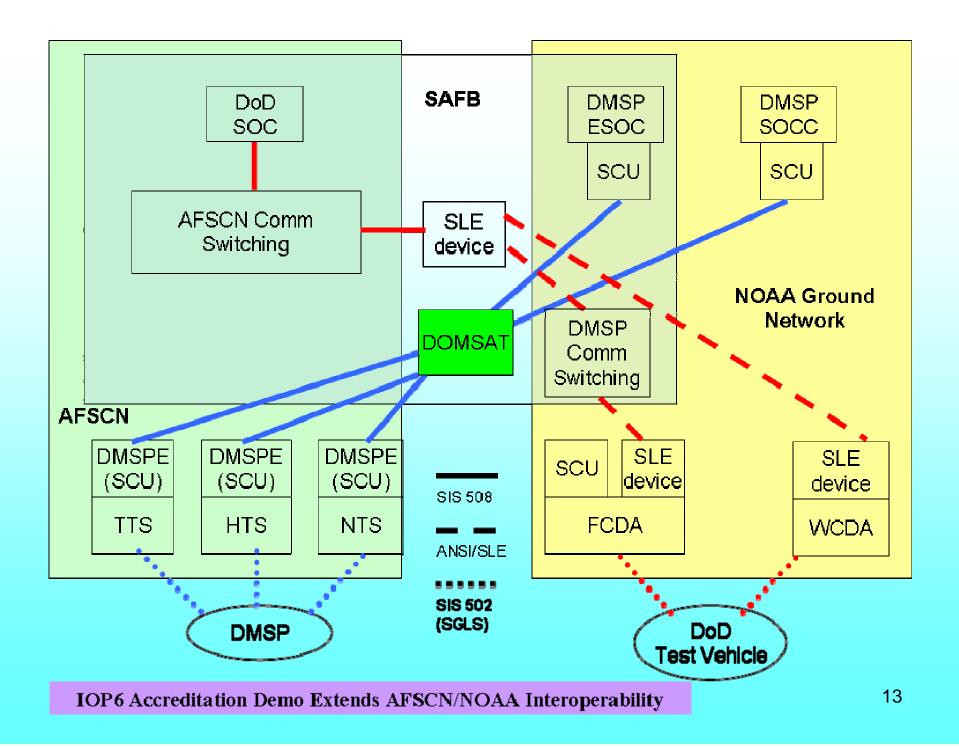
SMC Interoperability Project

- initiated by SMC/SCNG (AFSCN acquisition agency) to address AFSCN interoperability requirements arising from SatOps Transition Plan
- multi-year, multi-phase, progressive approach
- executed under Satellite Control Network Contract, in partnership with NOAA OSO
- project approach
 - develop, test, and adopt open, IP-based standards for AFSCN operations at interoperable interfaces
 - incorporate new standards into AFSCN systems acquisition projects such as RTS upgrade
- AFSCN interoperability accompanies evolution to IP-based packet-switched network from current circuit-switched ops

Telemetry and Command Interface Standardization

- CCSDS SLE (<u>www.ccsds.org</u>) provides an interagency standard for telemetry and command ground operations
 - NASA networks are moving toward adoption of SLE
- Interoperability project developed Adaptations and Conversions of SLE for DoD operations, being accredited as ANSI standards (*see presentation by J. Pietras*)
- SLE-based standards being coordinated with NASA and NOAA

Scheduling and Management Interface Standardization


- scheduling
 - emerging CCSDS Service Management standard will likely support DoD operations
- RTS monitor
 - emerging CCSDS Track Data Message standard will likely support DoD operations
 - an XML-based AFSCN standard will be adopted for monitor functions not suitable for an interagency standard
- RTS control
 - an XML-based AFSCN standard will be adopted for control functions not suitable for an interagency standard

Air Force – NOAA Collaboration

- NOAA Wallops CDA station hosted prototype SLE devices and provided test pass support
- Air Force SMC developed prototype SLE devices and conducted data analysis
- a final demonstration is planned which will employ the NOAA Fairbanks CDA, the first time an operational AF SOC has run supports through a civil agency RTS

Interconnectivity Demonstration

- utilize SLE-based interfaces for telemetry and commanding, and prototype SLE SM interfaces
- provide SLE leave-behind at Fairbanks and Wallops
- utilize existing AFSCN-Fairbanks connectivity for DMSP network
- utilize dedicated T1 for Wallops connectivity
- temporary demonstration of access to NOAA CDA stations from AFSCN network switching infrastructure

Interface Coordination

- USG interagency (NASA/NOAA/AFSCN) non-binding MoU on telemetry and command ground standards agreement in work
- AFSCN seeking observer status to CCSDS

Conclusions

- operational impediments to USG ground control network interoperability have been overcome
- SLE/IP-based open standards are being adopted by AFSCN at its interoperable interfaces
- AFSCN systems are being upgraded to support USB operations
- a final interoperability accreditation demonstration is under way between AFSCN and NOAA
- harmonization of USG networks facilitated by agreement on interfaces, anticipated to be based largely on CCSDS SLE – technical issues largely resolved
- Policy and programmatic issues remain