
1

University of Southern California
Center for Systems and Software Engineering

Next Generation Processes for
Achieving Operationally Responsive

Ground Systems

Barry Boehm, USC-CSSE
GSAW 2008; LA SPIN

April 2, 2008

Charts include explanatory notes

A major challenge for achieving operationally responsive ground systems is the
slowness of current processes for adapting complex software-intensive systems to
increasingly rapid change. A recent analysis of change processing times for two
complex, high-assurance software-intensive systems, one of which included a
ground station, showed average times of 27 workdays for within-group changes, 48
workdays for cross-group changes, and 141 workdays for changes involving
contract modifications.

This talk will present a next-generation synthesis of the spiral model and other
leading process models into the Incremental Commitment Model (ICM) being
piloted or considered for adoption in some parts of DoD. The ICM emphasizes
architecting systems to encapsulate subsystems undergoing the most rapid change
and having them implemented by agile developers; and architecting the incremental
development process by having agile systems engineers handling longer-range
change traffic to rebaseline the plans for future increments while largely plan-driven
teams develop and continuously V&V the current increment. Further information
on the ICM in the context of integrating systems and software engineering can be
found at http://csse.usc.edu/events/2008/ARR/pages/material.html

University of Southern California
Center for Systems and Software Engineering

03/19/2008

Thanks to Affiliates for Your
USC-CSSE Support

• Commercial Industry (12)
– Bosch, Cisco, Cost Xpert Group, Galorath, Group Systems, IBM,

Intelligent Systems, Microsoft, Motorola, Price Systems, Softstar
Systems, Sun

• Aerospace Industry (8)
– BAE Systems, Boeing, General Dynamics, Lockheed Martin,

Northrop Grumman(2), Raytheon, SAIC
• Government (7)

– DACS, NASA-Ames, NSF, OSD (AT&L) - S&SE, US Army Research
Labs, US Army TACOM, USAF Cost Center

• FFRDC’s and Consortia (6)
– Aerospace, FC-MD, IDA, JPL, SEI, SPC

• International (2)
– Institute of Software, Chinese Academy of Sciences, Samsung

2

3

University of Southern California
Center for Systems and Software Engineering

03/19/200803/19/2008 ©USC-CSSE 3

Outline
• Motivation and context

– Emerging challenges for future space and ground systems
– Software key to rapid operational responsiveness
– Difficulties in integrating systems and software engineering

• State of systems and software engineering (S&SE) integration
– Current SysE guidance: outdated assumptions; inhibitors to

software best practices

• Incremental Commitment Model (ICM) overview
– ICM nature, origin, and principles
– ICM process views and applicability to Young memo

• Conclusions: IS&SE with ICM
– References; Acronyms; Backup charts

The context of this presentation includes a summary of emerging challenges for future space
and ground systems. Key among these challenges is the need for rapid operational
responsiveness, which often depends on the responsiveness of the software. A study performed
in 2007 by USC-CSSE for the U.S. Department of Defense (DoD) on integrating systems and
software engineering found significant shortfalls of current DoD systems engineering guidance
in integrating systems and software engineering for both current and likely future DoD systems.
It also evaluated the Incremental Commitment Model (ICM) for integrating systems, software,
and human factors engineering recommended in a recent DoD-sponsored National Research
Council study [Pew and Mavor, 2007].
As recommendations, it presented a mixed strategy of incremental improvements to current
DoD acquisitions, pilot projects to explore new approaches such as the ICM, and incremental
improvement of DoD guidance documents and education and training initiatives. One element
of the mixed strategy underway is an effort led by USC-CSSE to develop a guidebook for the
use of the ICM to integrate systems and software engineering on DoD projects, in concert with
several current DoD projects piloting all or parts of the ICM.
Concurrently, USC-CSSE will be developing commercial and educational versions of the ICM,
developing with IBM an OpenUP electronic process guide for the ICM, and testing the
educational version in Fall 2008 in its annual series of 20 real-client, 6-8 person, MS-level
student team, e-services projects.

University of Southern California
Center for Systems and Software Engineering

Challenges for Future Space and Ground Systems

• Parts of multi-owner, net-centric systems of systems
– Frequent priority negotiation; security needs

• Multi-mission ground systems
– Further priority negotiation

• Dynamic recomposability from microsats
– Interoperability at every network layer

• Intelligent, adaptive, knowledge-based, autonomous
– Software/agent-intensive, V&V challenges

• All of the above plus rapid operational responses
– In asymmetric warfare context

03/19/2008 ©USC-CSSE 4

Future space and ground systems will less and less frequently be dedicated and self-
contained. Most will be parts of several multi-owner, net-centric systems of
systems creating conflicting new demands on the space and ground systems. This
will require rapid negotiation of change priorities; even more for multi-mission
ground systems. Being net-centric implies that the systems will be potential causes
and recipients of security vulnerabilities, placing heavier demands on security than
before.
Future satellite system concepts also include dynamic satellite configurations with
new capabilities arriving and leaving, implying the need for an interoperability
framework and rapid reconfiguration not only of the satellite components but of
their support systems and software. Further goals of more intelligent and
autonomous satellites create further challenges in verifying and validating their
performance.
Combining these with the need for rapid operational responsiveness creates even
more stringent challenges, especially in situations of asymmetric warfare, as
discussed next.

4

5

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 5

Asymmetric Conflict and OODA Loops

Decide on new
capabilities,
architecture
upgrades, plans

Act on plans,
specifications

Orient with respect
to stakeholders
priorities,
feasibility, risks

Observe
new/updated
objectives,
constraints,
alternatives

•Adversary
•Picks time and place

•Little to lose

•Lightweight, simple
systems and processes

•Can reuse anything

•Defender
•Ready for anything

•Much to lose

•More heavy, complex
systems and processes

•Reuse requires trust

In the early stage of the Iraq war, DoD forces were phenomenally successful. They
could pick the time and place of attacks, and their highly superior command,
control, communications, computing, intelligence, surveillance, and reconnaissance
(C4ISR) capabilities enabled them to perform observe-orient-decide-act (OODA)
loops well inside those of their conventional Iraqi army adversaries.
However, in the later stages of the Iraq war, DoD has faced much more serious
challenges that are representative of many future conflict situations. Their Iraqi
adversaries are diffuse. They can pick the time and place of an attack. They have
little to lose, and can use very agile, lightweight systems and processes, while being
able to use powerful but insecure open-source software at relatively little risk.
On the other hand, DoD forces must be ready for anything and be able to defend
much more valuable assets. This requires the more heavyweight systems and
processes currently required to develop and operate high-assurance systems, and
restricts the reuse of untrusted components. Even for individual systems, this causes
significant challenges in turning OODA loops inside those of one’s adversaries, but
as seen next, the challenges will be even higher for complex systems of systems.

6

University of Southern California
Center for Systems and Software Engineering

©USC-CSSE 6

Average Change Processing Time:
Two Complex Systems of Systems

Average workdays
to process

changes

0
20
40
60
80

100
120
140
160

Within
Groups

Across
Groups

Contract
Mods

Incompatible with turning within adversary’s OODA loop

03/19/2008

This chart shows data from two complex systems of systems that illustrates the
challenge of executing tight OODA loops that involve coordinating changes across
closely coupled systems of systems [Boehm, 2007]. The average time in workdays
(longer than in calendar days) was 27 workdays to close a change request within an
individual platform or capability group; 48 workdays if the change required
coordination across multiple platform or capability groups; and 141 workdays if the
change involved a change in performers’ contracts. These were typical high-content
U.S. build-to-specification contracts, which [Hall, 1976] found averaged 10 times as
long as high-context French contracts. Corroborative data was provided at the
workshop in [Schroeder, 2007],who found that the length of such changes was
proportional to the number of contracts requiring changes. Other Workshop
attendees reported even longer contract change turnaround times for large complex
systems. Clearly, improvements are needed in change-facilitating architectures,
processes, and contracts if DoD is to stand any chance of keeping its change-
adapting OODA loops within those of its adversaries.

7

University of Southern California
Center for Systems and Software Engineering

03/19/200803/19/2008 ©USC-CSSE 7

Outline
• Motivation and context

– Emerging challenges for future space and ground systems
– Software key to rapid operational responsiveness
– Difficulties in integrating systems and software engineering

• State of systems and software engineering (S&SE) integration
– Current SysE guidance: outdated assumptions; inhibitors to

software best practices

• Incremental Commitment Model (ICM) overview
– ICM nature, origin, and principles
– ICM process views and applicability to Young memo

• Conclusions: IS&SE with ICM
– References; Acronyms; Backup charts

The context of this presentation includes a study performed in 2007 by USC-CSSE
for the U.S. Department of Defense (DoD) on integrating systems and software
engineering. The study evaluated the strengths and shortfalls of current DoD
systems engineering guidance in integrating systems and software engineering for
both current and likely future DoD systems. It also evaluated the Incremental
Commitment Model (ICM) for integrating systems, software, and human factors
engineering recommended in a recent DoD-sponsored National Research Council
study [Pew and Mavor, 2007].
As recommendations, it presented a mixed strategy of incremental improvements to
current DoD acquisitions, pilot projects to explore new approaches such as the ICM,
and incremental improvement of DoD guidance documents and education and
training initiatives. One element of the mixed strategy underway is an effort led by
USC-CSSE to develop a guidebook for the use of the ICM to integrate systems and
software engineering on DoD projects, in concert with several current DoD projects
piloting all or parts of the ICM.
Concurrently, USC-CSSE will be developing commercial and educational versions
of the ICM, developing with IBM an OpenUP electronic process guide for the ICM,
and testing the educational version in Fall 2008 in its annual series of 20 real-client,
6-8 person, MS-level student team, e-services projects.

8

University of Southern California
Center for Systems and Software Engineering

• An omniscient authority pre-establishes the requirements, preferred
system concept, etc. (A4.1, 4.2, 4.4)

• Technical solutions are mapped and verified with respect to these
(A4.1, 4.2, 4.4)

• They and technology do not change very often (A4.2, 4.5, 6.2)
– Emphasis on rigor vs. adaptability

• The program has stable and controllable external interfaces (A4.5)
• Project organization is function-hierarchical and WBS-oriented

(A3.1, 3.2)
• All requirements are equally important (A4.2)
• Reviews event/product-based vs. evidence-based (A5.2)
• The program’s critical path can be defined up front (A6.1)
• Can achieve optimum readiness at minimum life-cycle cost (A6.5)

– No slack for contingencies
03/19/2008 ©USC-CSSE 8

Current SysE Guidance: Outdated Assumptions
Example: SysE Plan Preparation Guide

Sometimes OK for hardware; generally not for software

The SEP guidelines make a number of implicit assumptions which are increasingly invalid
as requirements become more emergent than prespecifiable, as requirements and technology
undergo more rapid change, and as capabilities and key performance parameters become at
least as success-critical as functions and products.
Even before Milestone A, Section 4 assumes that requirements are in place as a basis for
traceability, verification, and allocation, even before key technologies and COTS products
are fully evaluated. This tends to encourage premature specification of requirements, some
of which will be found later to be infeasible or inappropriate.
Project organization and Integrated Product Teams (IPTs) are assumed to follow functional
and Work Breakdown Structure (WBS) hierarchies. As discussed in charts 8 and 9,
functional hierarchies are incompatible with layered software structures and inhibit
integration of systems and software engineering. IPTs are also needed for non-functional
cross-cutting issues such as safety, security, and end-to-end performance.
Event- and product-based reviews are better than schedule-based reviews, but they
frequently overfocus on presenting functional diagrams without providing any evidence that
a product built to satisfy the functions would have adequate performance over a range of
stressing scenarios. Evidence of feasibility should also be produced, evaluated, and
reviewed for adequacy.

9

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 9

System/Software Architecture Mismatches
- Maier, 2006

• System Hierarchy

– Part-of relationships; no
shared parts

– Function-centric; single
data dictionary

– Interface dataflows

– Static functional-physical
allocation

• Software Hierarchy

– Uses relationships; layered
multi-access

– Data-centric; class-object
data relations

– Interface protocols;
concurrency challenges

– Dynamic functional-
physical migration

A valuable perspective on the mismatches between traditional hardware-oriented systems engineering
architectural structures and modern software architectural structures has been provided in [Maier,
2006]. First, traditional systems engineering methods functionally decompose the systems architecture
into one-to-many “part-of” or “owned-by” relationships, while modern software methods organize
system capabilities as layers of many-to-many service-oriented relationships. An example of the
difficulties this causes is given in the next chart.
Second, traditional systems engineering approaches collect data into a single data dictionary and store it
for common use. This was OK for sequential software, but for interrupt-driven concurrent software, it
could cause data being used by a program to be modified while the program was interrupted, causing
losses in software integrity. Modern object-oriented software approaches address this problem by using
“information-hiding” techniques to store local data inside objects, requiring more up-front data
engineering.
Third, hardware interfaces tend to be static: sensor data flows down a wire, and the sensor-system
interface can be represented by its message content, indicating the data’s form, format, units of
measure, precision, frequency, etc. In a net-centric world, interfaces are much more dynamic: a sensor
entering a network must go through a number of protocols to register its presence, perform security
handshakes, publish and subscribe, etc. The next chart describes how this can result in integration
problems.
Fourth, hardware relations are assumed to be static and subject to static functional-physical allocation:
if the engines on one wing fail, an engine cannot migrate from the other wing to rebalance the
propulsion. But in software, modules frequently migrate from one processor to another to compensate
for processor failures or processing overloads.

10

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 10

• Fractionated, incompatible sensor data management

• “Touch Football” interface definition earned value
– Full earned value taken for defining interface dataflow
– No earned value left for defining interface dynamics

• Joining/leaving network, publish-subscribe, interrupt handling,
security protocols, exception handling, mode transitions

– Result: all green EVMS turns red in integration

Examples of Architecture
Mismatches

…

Sensor 1

SDMS1

Sensor 2

SDMS2

Sensor 3

SDMS3

Sensor n

SDMSn

……

A frequent consequence of traditional systems engineering methods that functionally decompose the
systems architecture into one-to-many “part-of” or “owned-by” relationships is to create incompatible
and hard-to-modify software. This is exacerbated by the owned-by relations being propagated into
work breakdown structures (WBS) and WBS-oriented management structures. For example, an
aircraft has wings as parts, which have ailerons as parts, which have aileron controls as parts, which
have sensors as parts, which have sensor software as parts. Further, an aircraft using active controls to
stabilize an otherwise unstable aircraft will rely on atmospheric, propulsion and attitude sensors owned
by other parts of the aircraft hierarchy to accomplish the stabilization objectives.
In such situations, best-of-breed hardware subsystem contractors are often selected whose sensor data
management software is incompatible, causing major problems as compared to layered software
providing unified data management services. And if sensor data management changes need to be
coordinated across a wide variety of subsystem management chains, very slow OODA loops result. A
recent program’s addressal of this problem is shown in the next chart.
A frequent consequence of static interface definitions represented by their message content is that
system engineering will credit itself with full interface-definition earned value when it defines the
interface message and its content. If no further earned value can be generated for defining the
dynamic software interface aspects, they will tend to lose management priority and be deferred until
the deficiencies are found during integration, when numerous incompatible subsystem software
interface assumptions are found that are expensive and time-consuming to fix. This is a frequent
explanation for all-green earned value management system (EVMS) indicators turning red during
integration.

11

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 11

Effect of Software Underrepresentation

Original

SW

Sensors

SW

Networks

SW

WMI

C4ISR Sys Engr Platforms

PM

•Software risks discovered too late

•Slow, buggy change management

•Recent large project reorganization

SW SW

(WBS-based)

PM

Sys EngrSoftwareC4ISR

Sensors Networks

SW

New

A recent large, software-intensive system found itself encountering the type of
problems discussed on the previous chart, and effectively reorganized to address
them. It retained its functional part-of hierarchy for its hardware components, but
created a sub-program manager for software and a dotted-line hierarchy of software
chief engineers who could rapidly mobilize to address time-critical software change
management issues. It also provided a software staff organization that was able to
diagnose and address risks such as the touch-football interface definition problem
discussed on the previous chart.

12

University of Southern California
Center for Systems and Software Engineering

03/19/200803/19/2008 ©USC-CSSE 12

Outline
• Motivation and context

– Emerging challenges for future space and ground systems
– Software key to rapid operational responsiveness
– Difficulties in integrating systems and software engineering

• State of systems and software engineering (S&SE) integration
– Current SysE guidance: outdated assumptions; inhibitors to

software best practices

• Incremental Commitment Model (ICM) overview
– ICM nature, origin, and principles
– ICM process views and applicability to Young memo

• Conclusions: IS&SE with ICM
– References; Acronyms; Backup charts

The context of this presentation includes a study performed in 2007 by USC-CSSE
for the U.S. Department of Defense (DoD) on integrating systems and software
engineering. The study evaluated the strengths and shortfalls of current DoD
systems engineering guidance in integrating systems and software engineering for
both current and likely future DoD systems. It also evaluated the Incremental
Commitment Model (ICM) for integrating systems, software, and human factors
engineering recommended in a recent DoD-sponsored National Research Council
study [Pew and Mavor, 2007].
As recommendations, it presented a mixed strategy of incremental improvements to
current DoD acquisitions, pilot projects to explore new approaches such as the ICM,
and incremental improvement of DoD guidance documents and education and
training initiatives. One element of the mixed strategy underway is an effort led by
USC-CSSE to develop a guidebook for the use of the ICM to integrate systems and
software engineering on DoD projects, in concert with several current DoD projects
piloting all or parts of the ICM.
Concurrently, USC-CSSE will be developing commercial and educational versions
of the ICM, developing with IBM an OpenUP electronic process guide for the ICM,
and testing the educational version in Fall 2008 in its annual series of 20 real-client,
6-8 person, MS-level student team, e-services projects.

University of Southern California
Center for Systems and Software Engineering

03/19/2008

ICM Nature and Origins
• Integrates hardware, software, and human factors

elements of systems engineering
– Concurrent exploration of needs and opportunities
– Concurrent engineering of hardware, software, human aspects
– Concurrency stabilized via anchor point milestones

• Developed in response to DoD-related issues
– Clarify “spiral development” usage in DoD Instruction 5000.2

• Initial phased version (2005)
– Explain Future Combat System of systems spiral usage to GAO

• Underlying process principles (2006)
– Provide framework for human-systems integration

• National Research Council report (2007)

• Integrates strengths of current process models
– But not their weaknesses

©USC-CSSE 13

The ICM provides a framework for concurrently engineering the various aspects of
a system. A major challenge in concurrent engineering is the synchronization and
stabilization of the concurrently engineered artifacts. The ICM includes a set of
anchor point milestone criteria for achieving this synchronization and stabilization.
Its initial phased version of the spiral model was developed to help DoD clarify
“spiral development” usage in DoD Instruction 5000.2. It was refined significantly
in the DoD-sponsored National Research Council study on Human-System
Integration in the System Development Process [Pew and Mavor, 2007]. As shown
in the next chart, its intent has been to integrate the strengths of current process
models, while avoiding their weaknesses.

13

University of Southern California
Center for Systems and Software Engineering

03/19/2008

ICM integrates strengths of current process models
But not their weaknesses

• V-Model: Emphasis on early verification and validation
– But not ease of sequential, single-increment interpretation

• Spiral Model: Risk-driven activity prioritization
– But not lack of well-defined in-process milestones

• RUP and MBASE: Concurrent engineering stabilized by
anchor point milestones
– But not software orientation

• Lean Development: Emphasis on value-adding activities
– But not repeatable manufacturing orientation

• Agile Methods: Adaptability to unexpected change
– But not software orientation, lack of scalability

©USC-CSSE 14

The V-model was a significant step forward from the pure-sequential waterfall
model in focusing effort on early verification and validation, but it remained too
easy to interpret as a waterfall model, particularly for non-experts using waterfall
acquisition and contracting instruments. The spiral model has also been too easy to
misinterpret as a series of waterfall increments. The Rational Unified Process
(RUP) and Model-Based (System) Architecting and Software Engineering
(MBASE) process used the same anchor point milestones to stabilize concurrent
engineering, but have been highly focused on software development processes.
As with MBASE, Lean Development takes a value-based approach to its process
framework, but Lean Development has largely continued its primary focus on
repeatable manufacturing processes, although an agile version has emerged for
software. Overall, agile methods have provided much more adaptability to rapid
change. They still focus primarily on software, and have recently found repeatable
ways to scale up to about 100-person projects by focusing on more thorough
architecture definition and validation, but still have scalability problems beyond
there.

14

15

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 15

Process Model Principles
Principles trump diagrams

1. Commitment and accountability
2. Success-critical stakeholder satisficing
3. Incremental growth of system definition and

stakeholder commitment
4, 5. Concurrent, iterative system definition and

development cycles
Cycles can be viewed as sequential concurrently-
performed phases or spiral growth of system
definition

6. Risk-based activity levels and anchor point
commitment milestones

Used by 60-80% of CrossTalk Top-5 projects, 2002-2005

Process Model Principles

The critical success factor principles underlying the ICM were derived from studies of successful and
failed projects and the National Research Council’s Human-System Integration study group discussion of
particularly important human-system design and development principles. They are not specific to the
ICM, but key considerations in any life-cycle process. The primary rationale for each principle is
provided below.

1. Without stakeholder commitment and accountability for the system under development, trust and
commitment of the development organizations are at risk.

2. A system’s success-critical stakeholders include users, acquirers, developers, maintainers, and
potentially others. If stakeholders’ key value propositions are not satisfied by a proposed or delivered
system, they will refuse to use it or find ways to undermine it.

3. Single-increment, big-bang system developments take too long to develop and generally produce
obsolete, non-responsive systems. Or, they become swamped by change traffic in trying to fix premature
commitments.

4,5. Similarly, sequential, non-iterative processes take too long. They also must make premature
commitments to poorly-understood requirements, leading to expensive rework or unusable systems.

6. Risk management provides effective ways to prioritize activities and to determine how much of an
activity is enough. It also avoids risks turning into expensive or serious problems. Anchor point
milestones provide effective ways to synchronize and stabilize concurrent activities.

16

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 16

Incremental Commitment in
Gambling

• Total Commitment: Roulette
– Put your chips on a number

• E.g., a value of a key performance parameter
– Wait and see if you win or lose

• Incremental Commitment: Poker, Blackjack
– Put some chips in
– See your cards, some of others’ cards
– Decide whether, how much to commit to proceed

Incremental Commitment in Gambling
A simple metaphor to help understand the ICM is to compare ICM and
incremental-commitment gambling games such as poker and blackjack, to single-
commitment gambling games such as Roulette. Many system development contracts
operate like Roulette, in which a full set of requirements is specified up front, the
full set of resources is committed to an essentially fixed-price contract, and one
waits to see if the bet was a good one or not. With the ICM, one places a smaller bet
to see whether the prospects of a win are good or not, and decides whether to
increase the bet based on better information about the prospects of success.

17

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 17

Scalable remotely controlled
operations

Scalable remotely controlled operations – ICM Case Study
An example to illustrate ICM benefits is the Unmanned Aerial Vehicle (UAV) (or
Remotely Piloted Vehicles (RPV)) system enhancement discussed in Chapter 5 of
the NRC HSI report [Pew and Mavor, 2007]. The RPVs are airplanes or helicopters
operated remotely by humans. These systems are designed to keep humans out of
harm’s way. However, current RPV systems are human-intensive, often requiring
two people to operate a single vehicle. If there is a strong desire to modify the 2:1
(2 people to one vehicle) ratio to allow for a single operator and 4 aircraft (e.g., a
1:4 ratio), based on a proof-of principle agent-based prototype demo showing 1:4
performance of some RPV tasks, how should one proceed?

18

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 18

Total vs. Incremental Commitment – 4:1 RPV
• Total Commitment

– Agent technology demo and PR: Can do 4:1 for $1B
– Winning bidder: $800M; PDR in 120 days; 4:1 capability in 40 months
– PDR: many outstanding risks, undefined interfaces
– $800M, 40 months: “halfway” through integration and test
– 1:1 IOC after $3B, 80 months

• Incremental Commitment [number of competing teams]
– $25M, 6 mo. to VCR [4]: may beat 1:2 with agent technology, but not

4:1
– $75M, 8 mo. to ACR [3]: agent technology may do 1:1; some risks
– $225M, 10 mo. to DCR [2]: validated architecture, high-risk elements
– $675M, 18 mo. to IOC [1]: viable 1:1 capability
– 1:1 IOC after $1B, 42 months

Total vs. Incremental Commitment -- 4:1 RPV
This slide outlines two approaches to the RPV question: total commitment and
incremental commitment. While this is a hypothetical case for developing a
solution to the RPV manning problem, it shows how a premature total commitment
without significant modeling, analysis, and feasibility assessment will often lead to
large overruns in costs and schedule, and a manning ratio that is considerably less
than initially desired. However, by “buying information” early and validating high-
risk elements, technologically viable options are identified much earlier and can be
provided for a much lower cost and much closer to the desired date. The ICM
approach leads to the same improved manning ratio as the total commitment
approach, but sooner and at a much reduced cost.
The ICM approach also employs a competitive downselect strategy, which both
reduces risk and enables a buildup of trust among the acquirers, developers, and
users, as emphasized in the recent UASD(AT&L) John Young memo, “Prototyping
and Competition.”

19

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 19

The Incremental Commitment Life Cycle Process: Overview
Stage I: Definition Stage II: Development and Operations

Anchor Point
Milestones

Anchor Point
Milestones

Synchronize, stabilize concurrency via FEDsSynchronize, stabilize concurrency via FEDs
Risk patterns
determine life
cycle process

Risk patterns
determine life
cycle process

The Incremental Commitment Life Cycle Process: Overview
This slide shows how the ICM spans the life cycle process from concept exploration to
operations. Each phase culminates with an anchor point milestone review. At each anchor
point, there are 4 options, based on the assessed risk of the proposed system. Some options
involve go-backs. These options result in many possible process paths.
The life cycle is divided into two stages: Stage I of the ICM (Definition) has 3 decision
nodes with 4 options/node, culminating with incremental development in Stage II
(Development and Operations). Stage II has an additional 2 decision nodes, again with 4
options/node.
One can use ICM risk patterns to generate frequently-used processes with confidence that
they fit the situation. Initial risk patterns can generally be determined in the Exploration
phase. One then proceeds with development as a proposed plan with risk-based evidence at
the VCR milestone, adjusting in later phases as necessary. For complex systems, a result of
the Exploration phase would be the Prototyping and Competition Plan discussed above.
Risks associated with the system drive the life cycle process. Information about the risk(s)
(feasibility assessments) supports the decision to proceed, adjust scope or priorities, or cancel
the program.

20

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 20

Anchor Point Feasibility Rationales
• Evidence provided by developer and validated by

independent experts that:
If the system is built to the specified architecture, it will
– Satisfy the requirements: capability, interfaces, level of service,

and evolution
– Support the operational concept
– Be buildable within the budgets and schedules in the plan
– Generate a viable return on investment
– Generate satisfactory outcomes for all of the success-critical

stakeholders
• All major risks resolved or covered by risk management

plans
• Serves as basis for stakeholders’ commitment to proceed

Can be used to strengthen current schedule- or event-based reviews

Anchor Point Feasibility Rationales
To make ICM concurrency work, the anchor point milestone reviews are the
mechanism by which the many concurrent activities are synchronized, stabilized,
and risk-assessed at the end of each phase. Each of these anchor point milestone
reviews is focused on developer-produced evidence, documented in a Feasibility
Evidence Description (FED), to help the key stakeholders determine the next level
of commitment. At each program milestone/anchor point, feasibility assessments
and the associated evidence are reviewed and serve as the basis for the stakeholders’
commitment to proceed.
The FED is not just a document, a set of PowerPoint charts, or Unified Modeling
Language (UML) diagrams. It is based on evidence from simulations, models, or
experiments with planned technologies and detailed analysis of development
approaches and projected productivity rates. The detailed analysis is often based on
historical data showing reuse realizations, software size estimation accuracy, and
actual developer productivity rates.
It is often not possible to fully resolve all risks at a given point in the development
cycle, but known, unresolved risks need to be identified and covered by risk
management plans.

21

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 21

The Incremental Commitment Life Cycle Process: Overview
Stage I: Definition Stage II: Development and Operations

Anchor Point
Milestones

Anchor Point
Milestones

Concurrently engr.
OpCon, rqts, arch,
plans, prototypes

Concurrently engr.
OpCon, rqts, arch,
plans, prototypes

Concurrently engr.
Incr.N (ops), N+1

(devel), N+2 (arch)

Concurrently engr.
Incr.N (ops), N+1

(devel), N+2 (arch)

The Incremental Commitment Life Cycle Process: More on the Overview
Stage II of the Incremental Commitment Life Cycle provides a framework for
concurrent engineering and development of multiple increments. More on this
concurrency follows on the next slides.

Note: The term “concurrent engineering” fell into disfavor when behind-schedule
developers applied it to the practice of proceeding into development while the
designers worked on finishing the design. Not surprisingly, the developers
encountered a high rework penalty for going into development with weak
architecture and risk resolution.
“Concurrent engineering” as applied in the ICM is much different. It is focused on
doing a cost-effective job of architecture and risk resolution in Stage I; and on
performing stabilized development, verification, and validation of the current
system increment while concurrently handling the systems change traffic and
preparing a feasibility-validated architecture and set of plans for the next increment
in Stage II.

22

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 22

ICM HSI Levels of Activity for Complex Systems

ICM HSI Levels of Activity for Complex Systems
As mentioned earlier, with the ICM, a number of system aspects are being
concurrently engineered at an increasing level of understanding, definition, and
development. The most significant of these aspects are shown in this slide, an
extension of a similar view of concurrently engineered software projects developed
as part of the RUP (shown in a backup slide).
As with the RUP version, it should be emphasized that the magnitude and shape of
the levels of effort will be risk-driven and likely to vary from project to project. In
particular, they are likely to have mini risk/opportunity-driven peaks and valleys,
rather than the smooth curves shown for simplicity in this slide. The main intent of
this view is to emphasize the necessary concurrency of the primary success-critical
activities shown as rows. Thus, in interpreting the Exploration column, although
system scoping is the primary objective of the Exploration phase, doing it well
involves a considerable amount of activity in understanding needs, envisioning
opportunities, identifying and reconciling stakeholder goals and objectives,
architecting solutions, life cycle planning, evaluation of alternatives, and
negotiation of stakeholder commitments.

23

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 23

Different Risk Patterns Yield Different Processes

Different Risk Patterns Yield Different Processes
As illustrated in the four example paths through the Incremental Commitment Model in this slide, the ICM is not a single
monolithic one-size-fits-all process model. As with the spiral model, it is a risk-driven process model generator, but the
ICM makes it easier to visualize how different risks create different processes.
In Example A, a simple business application based on an appropriately-selected Enterprise Resource Planning (ERP)
package, there is no need for a Valuation or Foundations activity if there is no risk that the ERP package and its
architecture will not cost-effectively support the application. Thus, one could go directly into the Development phase,
using an agile method such as a Scrum/Extreme Programming combination would be a good fit. There is no need for Big
Design Up Front (BDUF) activities or artifacts because an appropriate architecture is already present in the ERP package.
Nor is there a need for heavyweight waterfall or V-model specifications and document reviews. The fact that the risk at the
end of the Exploration phase is negligible implies that sufficient risk resolution of the ERP package’s human interface has
been done.
Example B involves the upgrade of several incompatible legacy applications into a service-oriented web-based system.
Here, one could use a sequential waterfall or V-model if the upgrade requirements were stable, and its risks were low.
However, if for example the legacy applications’ user interfaces were incompatible with each other and with web-based
operations, a concurrent risk-driven spiral, waterfall, or V-model that develops and exercise extensive user interface
prototypes and generates a Feasibility Evidence Description (described on chart 20) would be preferable.
In Example C, the stakeholders may have found during the Valuation phase that their original assumptions about the
stakeholders having a clear, shared vision and compatible goals with respect the proposed new system’s concept of
operation and its operational roles and responsibilities were optimistic. In such a case, it is better to go back and assure
stakeholder value proposition compatibility and feasibility before proceeding, as indicated by the arrow back into the
valuation phase.
In Example D, it is discovered before entering the Development phase that a superior product has already entered the
marketplace, leaving the current product with an infeasible business case. Here, unless a viable business case can be made
by adjusting the project’s scope, it is best to discontinue it. It is worth pointing out that it is not necessary to proceed to the
next major milestone before terminating a clearly non-viable project, although stakeholder concurrence in termination is
essential.

University of Southern California
Center for Systems and Software Engineering

03/19/2008

Common Risk-Driven Special Cases of the ICM
Special Case Example Size,

Complexity
Change
Rate %
/Month

Criticality NDI Support Org, Personnel
Capability

Key Stage I Activities : Incremental Definition Key Stage II Activities: Incremental
Development, Operations

Time per Build;
per Increment

1. Use NDI Small Accounting Complete Acquire NDI Use NDI

2. Agile E-services Low 1 – 30 Low-Med Good;
in place

Agile-ready
Med-high

Skip Valuation , Architecting phases Scrum plus agile methods of choice <= 1 day;
2-6 weeks

3. Architected
Agile

Business data
processing

Med 1 – 10 Med-High Good;
most in place

Agile-ready
Med-high

Combine Valuation, Architecting
phases. Complete NDI preparation

Architecture-based Scrum of Scrums 2-4 weeks;
2-6 months

4. Formal Methods Security kernel;
Safety-critical LSI
chip

Low 0.3 Extra High None Strong formal
methods
experience

Precise formal specification Formally-based programming
language; formal verification

1-5 days;
1-4 weeks

5. HW component
with embedded
SW

Multi-sensor
control device

Low 0.3 – 1 Med-Very
High

Good;
In place

Experienced;
med-high

Concurrent HW/SW engineering. CDR-
level ICM DCR

IOC Development, LRIP, FRP.
Concurrent Version N+1 engineering

SW: 1-5 days;
Market-driven

6. Indivisible IOC Complete vehicle
platform

Med –
High

0.3 – 1 High-Very
High

Some in place Experienced;
med-high

Determine minimum-IOC likely,
conservative cost. Add deferrable SW
features as risk reserve

Drop deferrable features to meet
conservative cost. Strong award fee
for features not dropped

SW: 2-6 weeks;
Platform: 6-18
months

7. NDI- Intensive Supply Chain
Management

Med –
High

0.3 – 3 Med- Very
High

NDI-driven
architecture

NDI-experienced;
Med-high

Thorough NDI-suite life cycle cost-
benefit analysis, selection, concurrent
requirements/ architecture definition

Pro-active NDI evolution influencing,
NDI upgrade synchronization

SW: 1-4 weeks;
System: 6-18
months

9. Hybrid agile /
plan-driven
system

C4ISR Med –
Very High

Mixed
parts:
1 – 10

Mixed parts;
Med-Very
High

Mixed parts Mixed parts Full ICM; encapsulated agile in high
change, low-medium criticality parts
(Often HMI, external interfaces)

Full ICM ,three-team incremental
development, concurrent V&V, next-
increment rebaselining

1-2 months;
9-18 months

9. Multi-owner
system of systems

Net-centric
military operations

Very High Mixed
parts:
1 – 10

Very High Many NDIs;
some in place

Related
experience, med-
high

Full ICM; extensive multi-owner team
building, negotiation

Full ICM; large ongoing
system/software engineering effort

2-4 months; 18-
24 months

10. Family of
systems

Medical Device
Product Line

Med –
Very High

1 – 3 Med – Very
High

Some in place Related
experience, med
– high

Full ICM; Full stakeholder participation
in product line scoping. Strong business
case

Full ICM. Extra resources for first
system, version control, multi-
stakeholder support

1-2 months; 9-
18 months

C4ISR: Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance. CDR: Critical Design Review.
DCR: Development Commitment Review. FRP: Full-Rate Production. HMI: Human-Machine Interface. HW: Hard ware.
IOC: Initial Operational Capability. LRIP: Low-Rate Initial Production. NDI: Non-Development Item. SW: Software

Common Risk-Driven Special Cases of the ICM: Because of its complexity,
ICM examples have been developed to show users how to use the framework to
create a development process appropriate for their system of interest. These cases
cover the very small to the very large as well as the use of commercial off-the-shelf
(COTS) software products to the development of a large, complex custom software
application or integrated sets of software applications. Each of these situations
presents risks at the various stages of development, some risks more critical than
others. The goal of the ICM is to identify these risks and then tailor the process to
include rigor where necessary to investigate and manage the risks and to streamline
the process when risks are negligible, allowing the development team to be more
agile when possible. This table contains a list of the special cases of the ICM and
an example of each case. Each of the special cases is described in further detail in
a companion briefing.

25

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 25

Example ICM Commercial Application:
Symbiq Medical Infusion Pump

Winner of 2006 HFES Best New Design Award
Described in NRC HSI Report, Chapter 5

Example ICM HCI Application: Symbiq Medical Infusion Pump
During the National Research Council Human-System Integration study, the ICM
was refined by analyzing and formalizing examples of best commercial practices of
human-system integration. The Symbiq Medical Infusion Pump shown above was
developed by Abbott Laboratories and won the Best New Design of 2006 Award
from the Human Factors and Ergonomics Society. As evident from the views
above, such devices present significant challenges in integrating high-
safety.hardware, software, and human factors engineering
This next-generation infusion pump is a general-purpose intravenous infusion pump
(IV pump) designed primarily for hospital use with secondary, limited-feature use
by patients at home. The device is intended to deliver liquid medications, nutrients,
blood ,and other solutions at programmed flow rates, volumes, and time intervals
via intravenous and other routes to a patient. The device offers medication
management features, including medication management safety software through a
programmable drug library. The infuser also has sufficient memory to support
extensive tracking logs and the ability to communicate and integrate with hospital
information systems. The infuser is available as either a single-channel pump or a
dual-channel pump. The two configurations can be linked together o form a 3- or 4-
channel pump. The infuser includes a large touchscreen color display and can be
powered by either A/C power or rechargeable batteries. More detail on its use of
the ICM is in the backup charts and in Chapter 5 of [Pew and Mavor, 2007].

University of Southern California
Center for Systems and Software Engineering

Young Memo: Prototyping and Competition
• Discover issues before costly SDD phase

– Producing detailed designs in SDD
– Not solving myriad technical issues

• Services and Agencies to produce competitive
prototypes through Milestone B
– Reduce technical risk, validate designs and cost estimates,

evaluate manufacturing processes, refine requirements
• Will reduce time to fielding

– And enhance govt.-industry teambuilding, SysE skills,
attractiveness to next generation of technologists

• Applies to all programs requiring USD(AT&L) approval
– Should be extended to appropriate programs below ACAT I

03/19/2008 ©USC-CSSE 26

Core of Young Memo: USD(AT&L), 19 September 2007
Lessons of the past, and the recommendations of multiple reviews, including the Packard
Commission Report, emphasize the need for, and benefits of, quality prototyping. The Department
needs to discover issues before the costly System Design and Development (SDD) phase. During
SDD, large teams should be producing detailed manufacturing designs – not solving myriad
technical issues. Government and industry teams must work together to demonstrate the key
knowledge elements that can inform future development and budget decisions.
To implement this approach, Military Departments and Defense Agencies will formulate all
pending and future programs with acquisition strategies and funding that provide for two or more
competing teams producing prototypes through Milestone (MS) B. Competing teams producing
prototypes of key system elements will reduce technical risk, validate designs, validate cost
estimates, evaluate manufacturing processes, and refine requirements.
Based on these considerations, all acquisition strategies requiring USD(AT&L) approval must be
formulated to include competitive, technically mature prototyping through MS B. The Component
Acquisitions Executives will review all existing programs and all programs in the initial stages of
development for the potential to adopt this acquisition strategy. It is the policy of the Department of
Defense that this acquisition strategy should be extended to all appropriate programs below ACAT
I.

26

University of Southern California
Center for Systems and Software Engineering

Implementing the Young Memo
• Need way of assuring continuity of funding, but with

off-ramps
– Prototyping and Competition Plan
– Incremental off-ramp milestones

• Need criteria for assessing feasibility to proceed
– Avoid overfocus on prototyping

• Feasible, scalable technology and management infrastructure
• Adequate budget, schedule, critical skills
• Key stakeholders committed to proceed

– Shortfalls in evidence are risks, need risk management plans
• ICM provides desired processes and criteria

– Anchor Point milestones and Feasibility Evidence deliverable
– Incremental phase entry and exit criteria

03/19/2008 ©USC-CSSE 27

At a recent Government/industry/academia workshop at USC, a working group discussed the acquisition
implications of the Young memo. Industry personnel indicated that the traditional DoD staged
competition approach had too many delays between stages to keep top technical teams together, and too
many uncertainties about later-stage funding to justify commitment of scarce personnel and resources.
Government personnel indicated the need to have assured multi-stage funding at the program manager
level, but also to have incremental off-ramps if it became clear that the technology and knowledge base
was too immature. An attractive concept to address these issues is the use of a Prototyping and
Competition Plan, that identifies the competition strategy, required budgets and schedules, and
incremental off-ramps if none of the competitors can produce feasible and scalable solutions.
Some key criteria for assessing evidence of implementation feasibility and scalability are evidence of
technical capability to execute missions under realistic mission conditions, including ranges of off-
nominal conditions, adversary countermeasures, representative users, and environmental parameters.
These should include the ability to provide satisfactory tradeoffs among such key performance
parameters as safety, security, performance, usability, and interoperability.
Although the title of the Young memo is “Prototyping and Competition,” it is important to avoid
overfocus on prototyping. Evidence from program assessments indicates that the words in the Young
memo emphasizing the need to “validate cost estimates, evaluate manufacturing processes, and refine
requirements” in preparing the planning, staffing, and management foundations for system development
are at least as important to program success as technology maturity.
As discussed next, the ICM provides a process framework for implementing a Prototyping and
Competition Plan incorporating the desired characteristics. It includes anchor point milestones to serve
as phase gates and off-ramps; a Feasibility Evidence deliverable providing evidence of technical and
management feasibility and scalability; and criteria for specializing the ICM to common acquisition
situations.

27

28

University of Southern California
Center for Systems and Software Engineering

03/19/200803/19/2008 ©USC-CSSE 28

Outline
• Motivation and context

– Emerging challenges for future space and ground systems
– Software key to rapid operational responsiveness
– Difficulties in integrating systems and software engineering

• State of systems and software engineering (S&SE) integration
– Current SysE guidance: outdated assumptions; inhibitors to

software best practices

• Incremental Commitment Model (ICM) overview
– ICM nature, origin, and principles
– ICM process views and applicability to Young memo

• Conclusions: IS&SE with ICM
– References; Acronyms; Backup charts

The context of this presentation includes a study performed in 2007 by USC-CSSE
for the U.S. Department of Defense (DoD) on integrating systems and software
engineering. The study evaluated the strengths and shortfalls of current DoD
systems engineering guidance in integrating systems and software engineering for
both current and likely future DoD systems. It also evaluated the Incremental
Commitment Model (ICM) for integrating systems, software, and human factors
engineering recommended in a recent DoD-sponsored National Research Council
study [Pew and Mavor, 2007].
As recommendations, it presented a mixed strategy of incremental improvements to
current DoD acquisitions, pilot projects to explore new approaches such as the ICM,
and incremental improvement of DoD guidance documents and education and
training initiatives. One element of the mixed strategy underway is an effort led by
USC-CSSE to develop a guidebook for the use of the ICM to integrate systems and
software engineering on DoD projects, in concert with several current DoD projects
piloting all or parts of the ICM.
Concurrently, USC-CSSE will be developing commercial and educational versions
of the ICM, developing with IBM an OpenUP electronic process guide for the ICM,
and testing the educational version in Fall 2008 in its annual series of 20 real-client,
6-8 person, MS-level student team, e-services projects.

University of Southern California
Center for Systems and Software Engineering

03/19/2008

Conclusions: IS&SE with ICM
• Current DoD SysE guidance seriously inhibits SwE best practices

– Largely sequential definition, design, development, integration, and test
– Slows agility, ability to turn inside adversaries’ OODA loop
– Functional “part-of” vs. layered “served by” product hierarchy
– Static vs. dynamic interfaces: messages vs. protocols
– One-size-fits-all process guidance inhibits balancing agility and assurance

• Incremental Commitment Model (ICM) enables better IS&SE
– Integrates hardware, software, human factors aspects of SysE
– Concurrent exploration of needs, opportunities, solutions
– Successfully addresses issues above in commercial practice
– Only partially proven in DoD practice (examples: CrossTalk Top-5 projects)
– Key practices applied to help major programs (example: Future Combat Systems)
– Being adopted by major programs (example: Missile Defense Agency)
– Effort underway to work with adopters to develop DoD ICM Guidebook, in

coordination with other USD(AT&L)SSE initiatives

©USC-CSSE 29

As further elaborated in the backup charts, when systems engineering was initially
defining itself, maturing , and setting standards in the 1960s and 1970s, its focus
was on hardware artifacts. People were not part of “the system” but users of it. In
the 1980s, some pioneers began to experience that systems were getting more
software-intensive and human-intensive, and formulated initial approaches such as
Soft Systems Engineering [Checkland, 1980] and Systems Architecting [Rechtin,
1991] to integrate these factors into systems engineering.
Due to the fact that general changes in standards and guidelines take a good deal of
time, the DoD systems engineering standards area is still in the process of
assimilating these perspectives. The results of the 2007 IS&SE study and associated
results such as the [Maier, 2006] system and software architectures paper and the
NDIA Software Summit identification of critical software issues indicate that
software engineering best practices are being seriously inhibited by current DoD
systems engineering guidance, and that improvement avenues are available in such
areas as acquisition, architecture, and processes.
The ICM provides an avenue for adapting current best commercial IS&SE practices
for use on DoD projects. USC-CSSE’s current effort to work with pilot adopters to
develop a DoD ICM Guidebook, in coordination with other USD(AT&L)SSE
initiatives, affords opportunities for further candidate pilot adopters to collaborate in
this effort.

29

University of Southern California
Center for Systems and Software Engineering

2008 SOW: DoD ICM Guidebook

• Develop a draft Guidebook for next-generation DoD
IS&SE based on the ICM
– In collaboration with DoD and industry participants

• Collaborate with selected DoD and industry parties in
experimental tailoring of draft Guidebook elements

• Hold a series of Guidebook workshops
– Mar 19-20 (USC), July 15-17 (DC area), Oct 29-30 (USC)

• Coordinate Guidebook with other IS&SE initiatives
– Systems of systems engineering, systemic analysis,

acquisition, education, assessment, research and technology

03/19/2008 ©USC-CSSE 30

Task 1. In collaboration with DoD and industry participants, develop a draft Guidebook for next-generation DoD integrated
systems and software engineering (IS&SE) based on the Incremental Commitment Model (ICM). The guidebook will
include:

- General principles, practices, and DoD milestone and SE technical review criteria common to all projects using the ICM;
- Detailed guidelines for using the ICM key practices to integrate systems and software engineering, and to prepare for DoD

milestone and SE technical reviews during each DoD acquisition phase;
- Process decision criteria enabling early determination of project-appropriate, risk-driven special cases of the ICM;
- Guidelines for ICM-compatible interpretations of current DoD regulations, specifications, and standards;
- Examples of good and bad interpretations of ICM principles and practices;
- Guidelines for enhancing current projects with selected ICM principles and practices.

Task 2. Collaborate with selected DoD and industry projects in experimental tailoring of early draft Guidebook elements for
application to existing, new, and experimental pilot projects. Candidate projects include the Missile Defense Agency, the
Army Future Combat Systems program, a TBD Air Force space program, and a TBD Navy program.

Task 3. Hold a series of government-industry workshops to obtain feedback on evolving drafts of Guidebook
material. Candidate times and places would be in March at USC; in July on the east coast, and in October at USC.

Task 4. Coordinate development of the draft Guidebook with other OSD-AT&L IS&SE initiatives (e.g., acquisition,
education, assessment, systemic analysis, systems of systems engineering, research and technology agendas).

Task 5. In particular, coordinate with the SSE software systemic analysis initiative.

Task 6. In particular, coordinate with the SSE systems of systems engineering initiative.

30

31

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 31

References - I
Beck, K., Extreme Programming Explained, Addison Wesley, 1999.
Boehm, B., “Some Future Trends and Implications for Systems and Software Engineering Processes”,

Systems Engineering 9(1), pp. 1-19, 2006.
Boehm, B., Brown, W., Basili, V., and Turner, R., “Spiral Acquisition of Software-Intensive Systems of

Systems, CrossTalk, Vol. 17, No. 5, pp. 4-9, 2004.
Boehm, B. and Lane J., "21st Century Processes for Acquiring 21st Century Software-Intensive Systems of

Systems." CrossTalk: Vol. 19, No. 5, pp.4-9, 2006.
Boehm, B., and Lane, J., “Using the ICM to Integrate System Acquisition, Systems Engineering, and

Software Engineering,” CrossTalk, October 2007, pp. 4-9.
Boehm, B., and Lane, J., “A Process Decision Table for Integrated Systems and Software Engineering,”

Proceedings, CSER 2008, April 2008.
Boehm, B., “Future Challenges and Rewards for Software Engineers,” DoD Software Tech News, October

2007, pp. 6-12.
Boehm, B. et al., Software Cost Estimation with COCOMO II, Prentice Hall, 2000.
Boehm, B., Software Engineering Economics, Prentice Hall, 2000.
Carlock, P. and Fenton, R., "System of Systems (SoS) Enterprise Systems for Information-Intensive

Organizations," Systems Engineering, Vol. 4, No. 4, pp. 242-26, 2001.
Carlock, P., and J. Lane, “System of Systems Enterprise Systems Engineering, the Enterprise Architecture

Management Framework, and System of Systems Cost Estimation”, 21st International Forum on
COCOMO and Systems/Software Cost Modeling, 2006.

Checkland, P., Systems Thinking, Systems Practice, Wiley, 1980 (2nd ed., 1999).
Department of Defense (DoD), Defense Acquisition Guidebook, version 1.6, http://akss.dau.mil/dag/, 2006.
Department of Defense (DoD), Instruction 5000.2, Operation of the Defense Acquisition System, May 2003.
Department of Defense (DoD), Systems Engineering Plan Preparation Guide, USD(AT&L), 2004.
Electronic Industries Alliance (1999); EIA Standard 632: Processes for Engineering a System
Galorath, D., and Evans, M., Software Sizing, Estimation, and Risk Management, Auerbach, 2006.
Hall, E.T., Beyond Culture, Anchor Books/Doubleday, 1976.

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 32

References -II
Highsmith, J., Adaptive Software Development, Dorset House, 2000.
International Standards Organization, Information Technology Software Life Cycle Processes, ISO/IEC

12207, 1995
ISO, Systems Engineering – System Life Cycle Processes, ISO/IEC 15288, 2002.
Jensen, R. “An Improved Macrolevel Software Development Resource Estimation Model,” Proceedings,

ISPA 5, April 1983, pp. 88-92.
Krygiel, A., Behind the Wizard’s Curtain; CCRP Publication Series, July, 1999, p. 33
Lane, J. and Boehm, B., "System of Systems Cost Estimation: Analysis of Lead System Integrator

Engineering Activities", Information Resources Management Journal, Vol. 20, No. 2, pp. 23-32, 2007.
Lane, J. and Valerdi, R., “Synthesizing SoS Concepts for Use in Cost Estimation”, Proceedings of IEEE

Systems, Man, and Cybernetics Conference, 2005.
Lientz, B., and Swanson, E.B., Software Maintenance Management, Addison Wesley, 1980.
Madachy, R., Boehm, B., Lane, J., "Assessing Hybrid Incremental Processes for SISOS Development", USC

CSSE Technical Report USC-CSSE-2006-623, 2006.
Maier, M., “Architecting Principles for Systems-of-Systems”; Systems Engineering, Vol. 1, No. 4 (pp 267-

284).
Maier, M., “System and Software Architecture Reconciliation,” Systems Engineering 9 (2), 2006, pp. 146-159.
Northrop, L., et al., Ultra-Large-Scale Systems: The Software Challenge of the Future, Software Engineering

Institute, 2006.
Pew, R. W., and Mavor, A. S., Human-System Integration in the System Development Process: A New Look,

National Academy Press, 2007.
Putnam, L., “A General Empirical Solution to the Macro Software Sizing and Estimating Problem,” IEEE

Trans SW Engr., July 1978, pp. 345-361.
Rechtin, E. Systems Architecting, Prentice Hall, 1991.
Schroeder, T., “Integrating Systems and Software Engineering: Observations in Practice,” OSD/USC

Integrating Systems and Software Engineering Workshop,
http://csse.usc.edu/events/2007/CIIForum/pages/program.html, October 2007.

32

33

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE

List of Acronyms
B/L Baselined
C4ISR Command, Control, Computing, Communications, Intelligence, Surveillance,

Reconnaissance
CD Concept Development
CDR Critical Design Review
COTS Commercial Off-the-Shelf
DCR Development Commitment Review
DI Development Increment
DoD Department of Defense
ECR Exploration Commitment Review
EVMS Earned Value Management System
FCR Foundations Commitment Review
FDN Foundations, as in FDN Package
FED Feasibility Evidence Description
FMEA Failure Modes and Effects Analysis
FRP Full-Rate Production
GAO Government Accountability Office
GUI Graphical User Interface

34

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE

List of Acronyms (continued)

HMI Human-Machine Interface
HSI Human-System Interface
HW Hardware
ICM Incremental Commitment Model
IOC Initial Operational Capability
IRR Inception Readiness Review
IS&SE Integrating Systems and Software Engineering
LCA Life Cycle Architecture
LCO Life Cycle Objectives
LRIP Low-Rate Initial Production
MBASE Model-Based Architecting and Software Engineering
NDI Non-Developmental Item
NRC National Research Council
OC Operational Capability
OCR Operations Commitment Review
OO&D Observe, Orient and Decide
OODA Observe, Orient, Decide, Act
O&M Operations and Maintenance

35

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE

List of Acronyms (continued)

PDR Preliminary Design Review
PM Program Manager
PR Public Relations
PRR Product Release Review
RUP Rational Unified Process
SoS System of Systems
SoSE System of Systems Engineering
SSE Systems and Software Engineering
SW Software
SwE Software Engineering
SysE Systems Engineering
Sys Engr Systems Engineer
S&SE Systems and Software Engineering
USD (AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics
VCR Validation Commitment Review
V&V Verification and Validation
WBS Work Breakdown Structure
WMI Warfighter-Machine Interface

36

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 36

Rapid Change: Ripple Effects of Changes
Across Complex Systems of Systems Breadth, Depth, and Length

Platform N
•

•
•

Platform 1

Infra
C4ISR

C4ISR
Situation Assessment
Info Fusion
Sensor Data Management
Sensor Data Integration
Sensors
Sensor Components
:

2008 2010 2012 2014 2016

…1.0 2.0 3.0 4.0 5.0

Breadth

Length

Depth

DOTMLPF

Legend:
DOTMLPF Doctrine, Organization,

Training, Materiel, Leadership,
Personnel, Facilities

DoD’s C4ISR successes have come by transitioning from a set of stovepiped forces
with incompatible interfaces into a more network-centric set of interoperable forces
able to turn more rapid and accurate OODA loops. This has been done largely by
providing tighter coupling among the force components. However, as software and
high-performance-computing people have found via bitter experience, tight
coupling buys faster operational performance at the cost of slower adaptability to
change. Each change creates extensive ripple effects requiring coordinated
changing across the overall complex of components, along with second-order
effects on the system of system’s doctrine, operations, training, materiel, leadership,
personnel, and facilities (DOTMLPF). Not only does this happen across a wide
breadth of systems and platforms, but each system such as C4ISR has a deep
supplier chain of subcontractors and sub-subcontractors sustaining the system of
system’s situation awareness, information fusion, sensor data management, sensor
data integration, individual sensors, and sensor components. Beyond this, a change
may require some capabilities to be deferred to later increments across the length of
the system’s life cycle, causing further dependency ripple effects. The magnitude of
this challenge of change management across the breadth, depth, and length of
complex systems of systems using traditional systems architectures and contracting
mechanisms was seen in chart 5.

37

University of Southern California
Center for Systems and Software Engineering

03/19/200812/31/2007 ©USC-CSSE 37

0

10

20

30

40

50

60

70

80

90

1960 1964 1970 1975 1982 1990 2000

F-4 A-7

F-111

F-15

F-16

B-2

F-22

0

10

20

30

40

50

60

70

80

90

1960 1964 1970 1975 1982 1990 2000

F-4 A-7

F-111

F-15

F-16

B-2

F/A-22

Pe
rc

en
t o

f S
pe

ci
fic

at
io

n
R

eq
ui

re
m

en
ts

In

vo
lv

in
g

So
ftw

ar
e

C
on

tr
ol

Ref: Defense Systems Management College

Multi-year
delays

associated
with software
and system

stability
Software and
testing delays

push costs
above

Congressional
ceiling

Systems Engineering Is Evolving from its Hardware Origins

As illustrated by this chart, when systems engineering was initially defining itself,
maturing , and setting standards in the 1960s and 1970s, its focus was on hardware
artifacts such as the aircraft above. People were not part of “the system” but users
of it. In the 1980s, some pioneers began to experience that systems were getting
more software-intensive and human-intensive, and formulated initial approaches
such as Soft Systems Engineering [Checkland, 1980] and Systems Architecting
[Rechtin, 1991] to integrate these factors into systems engineering.
Due to the fact that general changes in standards and guidelines take a good deal of
time, the systems engineering field is still in the process of assimilating these
perspectives, as will be illustrated in the review below of current DoD systems
engineering guidance. If the techniques of hardware, software, and human factors
engineering were highly similar, this would not be a problem. However, as shown
in the next few charts, there are significant differences among these three disciplines
that can cause serious difficulties in using hardware-intensive guidelines to engineer
software-intensive or human-intensive systems.

38

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 38

Underlying HwE, SwE, HFE Differences
Difference Area Hardware Software Human Factors

Major Life-cycle
Cost Source

Development,
manufacturing

Life-cycle evolution Training and
operations labor

Ease of Changes Generally difficult Good within
architectural
framework

Very good, but
people-dependent

Nature of Changes Manual, labor-
intensive, expensive

Electronic,
inexpensive

Need personnel
retraining, can be
expensive

User-tailorability Generally difficult,
limited options

Technically easy;
mission-driven

Technically easy;
mission-driven

Indivisibility Inflexible lower limit Flexible lower limit Smaller increments
easier to introduce

Underlying Science Physics, chemistry,
continuous
mathematics

Discrete
mathematics,
linguistics

Behavioral sciences

Testing By test organization;
much analytic
continuity

By test organization;
little analytic
continuity

By users

The major sources of life cycle cost in a hardware-intensive system are during development and
manufacturing, particularly for systems having large production runs. For software-intensive systems,
manufacturing costs are essentially zero, and typically about 70% of the life cycle cost goes into post-
development maintenance and upgrades [Lientz-Swanson, 1980; Boehm, 1981]. For human-intensive
systems, the major costs are staffing and training, particularly for defense systems requiring continuous 24/7
operators. A primary reason for this difference is indicated in rows 2 and 3 of the table. Particularly for
widely-dispersed hardware such as ships, submarines, satellites, and some ground vehicles, making
hardware changes across a fleet can be extremely difficult and expensive. As a result, many hardware
deficiencies are handled via software or human workarounds that save money overall but shift the life-cycle
costs toward the software and human parts of the system.
As can be seen when buying hardware such as cars or TVs, there is some choice of options, but they are
generally limited. It is much easier to tailor software or human procedures to different classes of people or
purposes. It is also much easier to deliver useful subsets of most software and human systems, while
delivering a car without braking or steering capabilities is infeasible.
The science underlying most of hardware engineering involves physics, chemistry, and continuous
mathematics. This often leads to implicit assumptions about continuity, repeatability, and conservation of
properties (mass, energy, momentum) that may be true for hardware but not true for software or human
counterparts. An example is in testing. A hardware test engineer can generally count on covering a
parameter space by sampling, under the assumption that the responses will be a continuous function of the
input parameters. A software test engineer will have many discrete inputs, for which a successful test run
provides no assurance that the neighboring test run will succeed. And for humans, the testing needs to be
done by the operators and not test engineers.

39

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 39

Implications for Integrating SysE and SwE:
Current SysE Guidelines Emphasize Hardware Issues

• Focus on early hardware decisions may lead to
– Selecting hardware components with incompatible software
– Inadequate hardware support for software functionality
– Inadequate human operator capability
– Late start of software development

• Difficulty of hardware changes may lead to
– High rate of change traffic assigned to software without

addressing critical–path risks
• Indivisibility may lead to single-increment system acquisition
• Different test phenomena may lead to inadequate budget and

schedule for testing software and human factors

Focusing early systems engineering decisions on hardware cost-effectiveness can lead to serious
problems with the software and human aspects of the system. Frequently, source selection of
best-of-breed hardware suppliers will lead to a system with incompatible software commercial-
off-the-shelf (COTS) products and incompatible user interfaces that are difficult if not
impossible to reconcile. A wireless system with limited size, weight, and power constraints may
skimp on computer capacity (inflating software costs) or display capabilities (making the system
effectively unusable). Deferring the start of software development until all of its requirements
are ready will often put the software on the system delivery critical path, thereby causing critical
path slippages when using software workarounds to cover hardware shortfalls.
Acquiring indivisible hardware systems often leads to acquiring all of the software at once also.
This increases critical-path risks and loses the opportunity to obtain user feedback on early
software increments. It also delays the start of infrastructure and test software, often delaying
the start of integration and test. And assuming analytic continuity when test planning and
budgeting will generally leave insufficient resources for software and operational testing.

40

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 40

Software Development Schedule Trends
#Years ~ 0.4 * cube root (KSLOC)

0

10

20

10 100 1000 10000 100000

Years to
Develop

Software,
Hardware

HW

Thousands of source lines of code (KSLOC)

SW

Delaying software start increasingly risky

Need to find ways to compress software schedules

- Timeboxing; architecting for decoupled parallel development

A persistent relationship between software size and development schedule found in most software
estimation models [Putnam, 1978; Boehm, 1981; Jensen, 1983, Galorath-Evans, 2006] is that the number
of years a software project will take to complete is proportional to roughly 0.4 times the cube root of the
project’s size in thousands of equivalent (reuse-adjusted) source lines of code (KSLOC). For 1000
KSLOC or a million lines of source code, the cube root of 1000 is 10, and the development time is likely
to be around 0.4*10 = 4 years, or at the lower end of a 4-8 year range of typical hardware system
development times. However, around 10 million lines of code, the software development time begins to
exceed typical hardware development times, and many envisioned complex systems of systems have
much more software than this to develop.
For one thing, this means that delaying the start of software development on such projects is extremely
risky, and it is better to accept some risk in starting parts of the software, particularly the infrastructure
and integration support software, before the total system is fully defined (often, starting the software will
find system problems such as those described in the previous charts and save much downstream rework).
Another risk mitigation strategy is timeboxing: if schedule is indeed the independent variable, it is best to
prioritize features and architect the system to be able to add or drop borderline-priority features to meet
the schedule. A further mitigation strategy is to architect the system to enable extensive parallel
development: if the architecture enables a set of million-line components developed in 4 years to plug
and play, a great deal of integration and rework time is saved. But as discussed on the next chart, this
requires an increasingly large investment in up-front architecting time.

41

University of Southern California
Center for Systems and Software Engineering

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Percent of Time Added for Architecture and
Risk Resolution

Pe
rc

en
t o

f T
im

e
A

dd
ed

 to
 O

ve
ra

ll
Sc

he
du

le

03/19/2008 ©USC-CSSE 41

How Much Architecting is Enough?
- Larger projects need more

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

10000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Sweet Spot Drivers:

Rapid Change: leftward

High Assurance: rightward

Suppose that the mitigation strategy discussed on the previous chart is applied to a 10 million
line software system normally requiring 9 years to develop. If the system is architected to
enable 10 1-million-line components to be concurrently developed in 4 years to plug and play,
a great deal of integration and rework time is saved.
The figure above shows how this tradeoff between architecting time and rework time can be
analyzed by the well-calibrated COCOMO II Architecture and Risk Resolution Factor [Boehm
et al., 2000]. It shows that for a 10,000-KSLOC system, the “sweet spot” minimizing the sum
of architecting time and rework time occurs at about 37% of the development time for
architecting, with a relatively flat region between 30% and 50%. Below 30%, the penalty
curve for premature issuance of supplier specifications is steep: a 17% investment in
architecting yields a rework penalty of 48% for a total delay of 65% compared with a rework
penalty of 20% and a total delay of 50% for the 30% architecting investment.
For the 10,000-KSLOC system above, investing 33% of a 9-year development schedule for
architecting would use 3 years. If the 10 components developed in 4 years were then able to
plug and play, the system would be delivered in 7 years vs. 9. Note on the chart that rapid
change would require some effort and delay in revising the architecture, but this could add up
to 2 years and the project would still be ahead.
This figure and its implications were convincing enough to help one recent very large
software-intensive system to add 18 months to its schedule to improve the architectural
specifications before committing to development.

42

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 42

Relationship Between Systems Engineering and
Software Engineering in a SoS Environment

• Focus of System of Systems (SoS) SysEs: Primarily attempting
to identify set of options for incorporating functions to support
desired new capabilities

• Core element activities do not tend to segregate hardware
engineering, software engineering, and human factors
engineering
– SysEs take more of a holistic point of view in analyses and trade-offs
– SysEs looking for options and opportunities within the desired

timeframe
• Success in integration of systems and software engineering

heavily influenced by the fact that SoS development seldom
starts with a “clean sheet of paper”

• Current challenge: What can we learn from this for new system
developments starting with a fairly clean sheet of paper?

Relationship Between Systems Engineering and Software Engineering in a
System of Systems (SoS) Environment
Key to making this relationship work for SoSE are:

Addressing organizational as well as technical perspectives
Focusing on areas critical to the SoS:

• Overall capability of SoS
• Continuous (‘up front”) analysis which anticipates change based on a

robust understanding of internal and external sources of change
• Software and system architectures that are open and loosely coupled,

extensible, flexible, and persistent over time
• Design strategy that relies on trades performed upfront and throughout

A technical management approach that reflects need for transparency and
trust with focused active participation

43

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 43

Comparison of Top-10 Risks

1. Acquisition management and staffing
2. Requirements/architecture feasibility
3. Achievable software schedules
4. Supplier integration
5. Adaptation to rapid change
6. Quality factor achievability and

tradeoffs
7. Product integration and electronic

upgrade
8. Software COTS and reuse feasibility
9. External interoperability
10. Technology readiness

1. Architecture complexity, quality
tradeoffs

2. Requirements volatility
3. Acquisition and contracting

process mismatches
4. Budget and schedule
5. Customer-developer-user
6. Requirements mismatch
7. Personnel shortfalls
8. COTS
9. Technology maturity
10. Migration complexity

Software-Intensive Systems of Systems
- CrossTalk, May 2004

Software-Intensive Systems
- CSSE 2006-07 Top 10 Survey

Many similarities…
Results from an informal survey conducted as part of the IS&SE workshop

indicate that the above risks are still the top 10 risks of concern…

Comparison of Top-10 Risks
The top 4 risks in three different surveys include:

• Acquisition and contracting issues
• Architecture issues
• Budget and schedule issues
• Requirements volatility/feasibility

These same risks are also reflected in the COCOMO software, systems engineering,
and system of systems cost models and are considered to be significant cost drivers
as well as influences on the overall success of the development effort.

44

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 44

SoSE Lessons Learned to Date
• SoSs provide examples of how systems and software

engineering can be better integrated when evolving existing
systems to meet new needs

• Net-centricity and collaboration-intensiveness of SoSs have
created more emphasis on integrating hardware, software,
and human factors engineering

• Focus is on
– Flexibility
– Adaptability
– Use of creative approaches, experimentation, and tradeoffs
– Consideration of non-optimal approaches that are satisfactory

to key stakeholders
• SoS process adaptations have much in common with the

Incremental Commitment Model (ICM)

Systems of Systems Engineering Lessons Learned to Date
This slide summarizes some of the key findings from both the OSD SoSE pilot
surveys and the USC CSSE SoSE cost model research. There are many instances
where SoSE teams have adapted and streamlined traditional systems and software
engineering processes to better integrate them and view both areas when making
both strategic and tactical SoS architecture and evolution decisions. The need to be
flexible, adaptable, and creative to quickly meet changing needs has driven much of
this adaptation and streamlining. It is also interesting to observe that many of the
adaptations that have been made to these processes are consistent with the ICM
principles to be discussed in chart 36 and incorporate the ICM agile, plan-driven,
and V&V team focus to be discussed in charts 47 and 48.

45

University of Southern California
Center for Systems and Software Engineering

• Systems Engineering Plan Preparation
Guide

• Defense Acquisition Guide Chapter 4
(SysE)

• DoDI 5000.2

03/19/2008 ©USC-CSSE 45

DoD S&SE Guidance Strengths and Shortfalls

Overall, the DoD Systems Engineering Plan Preparation Guidelines, Chapter 4
(Systems Engineering) of the Defense Acquisition Guidebook, and DoD Instruction
5000.2 are significant advances over their predecessors, and most of their shortfalls
can be overcome when being applied by experts.
Unfortunately, many programs have shortages of experts, particularly for software,
and literal application of some of the guidance shortfalls can lead to trouble in
integrating systems and software engineering. The identification of a shortfall is
meant to be an indicator of an issue to consider carefully during systems
engineering of a program, and an item to consider in future versions of the
guidelines, and not as a reason to avoid use of the guidelines.

46

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 46

Review of SysE Plan (SEP) Guidelines:
Advances Over Previous Approaches

• Tailoring to milestones A, B, C (all)
• Better linkages to acquisition, program management (A2.5, 3, 6)
• More explicit focus on risk management (A 4.3, 6.3)
• More explicit focus on Tech. Readiness Levels (A2.3, 4.3)
• More explicit addressal of full range of stakeholders (A 3.2-5,

5.4)
• Addressal of Family/Systems of Systems considerations (A1.1,

3.5, B, C)
• Focus on critical technologies, fallback strategies (A2.3)
• Focus on event-based vs. schedule-based milestones (A5.1)
• Identification of IPT critical success factors (A3.2, 3.3, 3.4)

For convenience to DoD System Engineering Plan (SEP) developers, there are individual guidelines
for each of the SEPs to be reviewed at each major DoD acquisition milestone and covering its
subsequent phase: Milestone A and Technology Development; Milestone B and System
Development and Demonstration; and Milestone C and Production and Deployment/Operations and
Support. The guidelines for each milestone and phase are highly overlapping, so this review will
focus on the guidelines for Milestone A. The comments above are referenced to the relevant
paragraph in Section A, which usually has a counterpart paragraph in the Milestone B and C
guidelines. Most of the comments are fairly self-evident, so these notes will concentrate on items 3,
6, and 8 in blue.
Early waterfall-model approaches to systems engineering focused on achieving such properties as
completeness and correctness, which often focused projects on trivial issues while high-risk issues
remained unaddressed. The current SEP Guidelines appropriately emphasize risk management
integration in the Milestone A, B, and C guidelines.
Previous SEP guidance was primarily formulated before there were many families of systems or
systems of systems being developed. The current SEP Guidelines explicitly include these, and
emphasize integration with external organizations in the Milestone A, B, and C guidelines.
Previous project management guidelines emphasized keeping on a predetermined schedule and often
resulted in premature reviews. The definition and achievement of entry and exit criteria for each
review are emphasized in the Milestone A, B, and C guidelines.

47

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 47

SEP Guidelines: Risky Assumptions I
Sometimes OK for hardware; generally not for software

• An omniscient authority pre-establishes the requirements,
preferred system concept, etc. (A4.1, 4.2, 4.4)

• Technical solutions are mapped and verified with respect to
these (A4.1, 4.2, 4.4)

• They and technology do not change very often (A4.2, 4.5, 6.2)
– Emphasis on rigor vs. adaptability

• The program has stable and controllable external interfaces
(A4.5)

• MRL’s and TRL’s exist independent of program scale and
complexity (A2.3, 4.3, 4.5)

• Systems do not include humans (Pref., A4.4, 3.2)
– Emphasis on material requirements, solutions (A3.1, 3.2, 6.4, 6.5)

• Confusion in satisfying users vs. all stakeholders (A2.1, 3.4)

The SEP guidelines make a number of implicit assumptions which are increasingly invalid
as requirements become more emergent than prespecifiable, as requirements and technology
undergo more rapid change, and as capabilities and key performance parameters become at
least as success-critical as functions and products. Again and below, the notes will focus on
the less self-evident points; here on points 1, 5, and 6.
Even before Milestone A, Section 4 assumes that requirements are in place as a basis for
traceability, verification, and allocation, even before key technologies and COTS products
are fully evaluated. This tends to encourage premature specification of requirements, some
of which will be found later to be infeasible or inappropriate.
Readiness levels for technology (TRLs) and manufacturing (MRLs) are referred to
independent of the scale and environment of the system. A technology can be at Level 7 for
a modest-size system and Level 2 for a very large system.
Systems are defined in terms of products and functions, do not include people, and
minimally address operational requirements and critical mission scenarios.

48

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 48

SEP Guidelines: Risky Assumptions II
Sometimes OK for hardware; generally not for software

• Project organization is function-hierarchical and WBS-oriented (A3.1,
3.2)

• Contractual, MOA arrangements are separable from technical issues
(A3.5, 6.3)

• All requirements are equally important (A4.2)
• Reviews event/product-based vs. evidence-based (A5.2)
• Producibility is important for manufacturing but not software (A6.1, Δ

in 6.4)
• The program’s critical path can be accurately identified up front (A6.1)
• Program managers only make decisions at review points (A6.2)
• One can achieve optimum readiness at minimum life-cycle cost (A6.5)

– No slack for contingencies
• Most importantly, overfocus on technology maturity (A4)

– Many more sources of risk in OSD/AT&L root cause analysis

Here, the notes address points 1, 4, 8, and 9.
Project organization and Integrated Product Teams (IPTs) are assumed to follow
functional and Work Breakdown Structure (WBS) hierarchies. As discussed in
charts 8 and 9, functional hierarchies are incompatible with layered software
structures and inhibit integration of systems and software engineering. IPTs are also
needed for non-functional cross-cutting issues such as safety, security, and end-to-
end performance.
Event- and product-based reviews are better than schedule-based reviews, but they
frequently overfocus on presenting functional diagrams without providing any
evidence that a product built to satisfy the functions would have adequate
performance over a range of stressing scenarios. Evidence of feasibility should also
be produced, evaluated, and reviewed for adequacy.
In a world of uncertainty and complex tradeoffs among multiple objectives,
stakeholders, and performance criteria, words such as optimize, maximize, and
minimize are misleading. For example, a minimum life-cycle cost system will have
no slack and no way to be optimally ready for contingencies.
Technology maturity is an important aspect of a proposed system, but it is only one
of many aspects that must be systems engineered to achieve program success. Chart
50 will elaborate on this.

49

University of Southern California
Center for Systems and Software Engineering

• Defense Acquisition Guide Chapter 4 Strengths
– Major improvement over previous sequential, reductionist

approach
– Addressal of systems of systems
– Good emphasis on early V&V, trade spaces, thorough up-

front effort
• Shortfalls

– Still some sequential, reductionist, hardware holdovers:
complete requirements, top-down decomposition, RAM

– Reluctance to reconcile related regulations,
specifications, and standards

• Inheritance of conflicts (people internal/external to system)
– Minimal addressal of change analysis, external systems

evolution, SysE support of acquisition management

03/19/2008 ©USC-CSSE 49

DAG Chapter 4: SysE Evaluation: Summary

As with the SEP Preparation Guide, Chapter 4 (Systems Engineering) of the Defense Acquisition Guidebook
is a major improvement over its predecessors, but has some shortfalls with respect to integrating systems and
software engineering that can be overcome when being applied by experts, but can lead to trouble when
being applied by non-experts.
Its primary strengths are a much improved emphasis on concurrently engineering requirements and
solutions, on addressal of systems of systems issues, and on early tradeoff analyses and verification and
validation (V&V).
Its primary shortfalls involve residual holdovers from previous guidelines such as assumptions that emergent
requirements can be prespecified, that systems can be defined purely top-down, and that reliability,
availablity, and maintainability (RAM) apply only to hardware and not to software.
It adopts incompatible definitions from different standards and directives: in Section 4.1.1, it follows EIA/IS
632 in defining a system as a product external to people; and in Section 4.1.3, it follows DoD Directive
5000.1 in defining a total system as including hardware, software, and human elements. And it could
provide more extensive guidance in such increasingly important areas as change impact analysis and
synchronization, systems engineering of adaptation to externally evolving interoperating systems, and
systems engineering support of complex systems of systems acquisition.
Evaluation of its specific strengths and shortfalls is organized below in terms of four key issue areas: support
of concurrent vs. sequential engineering; systems engineering satisficing among multiple missions,
stakeholders, and objectives; incremental and evolutionary system definition and commitment; and risk-
driven activities.

50

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 50

DAG Chapter 4: SysE Evaluation:
Concurrent Engineering

• Strengths
– Use of Integrated Product Teams, IPPD (4.1.5)
– NDI evaluation during requirements development (4.2.4.1)
– Emphasized for systems of systems (4.2.6)

• Shortfalls
– Logical analysis overly top-down, sequential (4.2.4.2)
– V-diagrams too sequential, heavyweight (4.3.1, 4.3.2)
– Functional decomposition incompatible with NDI,

service/object-oriented approaches (throughout)
– Cost not considered in 4.3.1.3; highlighted in 4.3.1.4
– Evolutionary acquisition SysE too sequential (4.3.6)
– Some hardware-only sections (4.4.8, 4.4.9)

In the area of concurrent vs. sequential engineering, Chapter 4 is strong in its emphasis on Integrated
Product and Process Development (IPPD) and its use of Integrated Product Teams (IPTs) to balance
product and process solutions and meet both cost and performance objectives. It recognizes the increasing
importance of Non-Developmental Items (NDIs) to system solutions and the need to concurrently and
iteratively explore and define requirements and solutions.
It is good in addressing systems of systems issues, although it inconsistently recommends top-down
approaches for addressing systems of systems and NDIs, which have strong bottom-up aspects. Its V-
diagrams are improvements over previous more-sequential versions, although non-experts will still find it
too easy to misinterpret them as sequential waterfall processes, particularly if their contracts and award fee
structures invoke waterfall standards such as MIL-STD-1521B.
As discussed in charts 8 and 9, its strong emphasis on functional decomposition is incompatible with
layered, service-oriented software architecture decomposition and related software NDIs. Section
4.3.1.3’s guidance lays minimal emphasis on cost and affordability, although valid cost estimates and
acceptable cost risk are highlighted as review criteria in Section 4.3.1.4.
Sections 4.4.8 and 4.4.9 have statements such as, “RAM (reliability, availability, maintainability) system
requirements address all elements of the system, including support and training equipment, technical
manuals, spare parts, and tools.” But all of their specifics, such as spare parts, producibility, system
manufacturing and assembly, sampling methods to estimate part reliability, and corrosion protection and
mitigation are hardware-oriented, with no mention of system-critical software RAM and supportability
issues such as deadlock avoidance, database recovery, and software COTS refresh synchronization.

51

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 51

DAG Chapter 4: SysE Evaluation:
Stakeholder Satisficing

• Strengths
– Balanced, user-adaptive approach (4.1.1)
– Use of Integrated Product Teams and HSI (4.1.5, 4.4.10)

• Shortfalls
– Emphasis on “optimizing” (4.0, 4.1.3, 4.1.5)
– Overfocus on users vs. other stakeholders (4.3.1, 4.3.2)

• Owners, Maintainers, Interoperators, Sponsors

Overall, Chapter 4 adopts a balanced approach that is “adaptive to the needs of the
user,” and has a strong emphasis on IPTs and human-systems integration (HSI)
techniques to achieve balance. However, it overemphasizes satisfying users and
says little about satisficing with respect to other success-critical stakeholders such as
owners of key component systems and interoperating systems, system maintainers,
sponsors, and others such as NDI suppliers and testers. And as discussed on chart
44, it is inconsistent about whether or not humans are part of the system.

52

University of Southern California
Center for Systems and Software Engineering

• Strengths
– Evolutionary acquisition (4.1.3, 4.1.4)
– Emphasized for systems of systems (4.2.6)
– Good lists of ASR, SRR content (4.3.1.4.2, 4.3.2.4.1)

• Shortfalls
– IPPD emphasis on “optimizing” (4.1.5)
– System Design makes all life cycle decisions (4.2.3.1)
– ASR try to minimize future change (4.3.1.4.2)
– SRR overemphasis on fully-defined requirements

(4.3.2.4.1)

03/19/2008 ©USC-CSSE 52

DAG Chapter 4: SysE Evaluation:
Incremental/Evolutionary Definition and Commitment

With respect to incremental and evolutionary system definition and commitment,
DAG Chapter 4 explicitly endorses evolutionary acquisition overall, and explicitly
endorses incremental development for systems of systems. The content of its
Alternative System Review is quite strong, including development of a
comprehensive rationale and risk assessment for the project’s preferred system
solution. However, its attempt to minimize the number of requirements that may
need to be changed in future phases is inconsistent with future trends toward
increasing changes in threats and opportunities.
The content of its System Requirements Review has strong coverage of software,
human factors, technical feasibility, and cost and schedule feasibility. However, it
is overly focused on getting requirements fully defined and on functional
decomposition.

53

University of Southern California
Center for Systems and Software Engineering

• Strengths
– Good general approach, use of P(L), C(L) (4.2.3.5)
– Good hierarchical risk approach (4.2.3.5)
– Good overall emphasis on risk (4.3.1, 4.3.2)

• Shortfalls
– Underemphasis on reviewing feasibility evidence as major

source of risk (4.2.3.5)
– ASR underemphasis on feasibility evidence, risk (4.3.1.4.3)
– No risk reserve approach, identification of top risk sources
– No approach to risk-driven level of detail, level of activity,

earned value management

03/19/2008 ©USC-CSSE 53

DAG Chapter 4: SysE Evaluation:
Risk-Driven Activities

DAG Chapter 4 has a good overall emphasis on risk, and good recommended risk
assessment and risk mitigation techniques, although its waterfall model of the risk
management process in Section 4.2.3.5 is surprisingly risk-insensitive. It could say
more about how to fund risk mitigation, about how to use risk to determine the
appropriate level of detail for processes and products, and about how to use a more
risk-based approach to earned value management.

54

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 54

Review of Current DoDI 5000.2 (2003)
• Strengths

– Good set of commitment milestones
– Emphasizes evolutionary and incremental acquisition
– Including technology development strategy for next increment
– Emphasizes maturing technology before committing to develop
– Spiral development with risk management, demos, user feedback

• Shortfalls
– Underemphasizes pre-milestone B risk management

• Covers technology maturity, but not other feasibility issues
– Requirements/architecture, plans, cost-schedule, staffing,

acquisition, contracting, operational concept feasibility
– Needs updating for recent issues

• Systems of systems, time-defined acquisition, COTS-based systems,
multi-timeline systems

DoDI 5000.2 provides a very strong basis for integrating systems and software
engineering. Besides having a good set of commitment milestones and emphasizing
risk management, evolutionary, incremental, and simulation-based acquisition, it
calls for multiple architectural views. Unlike the SEP Guide and DAG Chapter 4, it
does not specify functional decomposition as the preferred architectural approach,
and emphasizes operational as well as system and technical architecture views. It
recommends the type of concurrent increment development and next-increment
architecture rebaselining described in charts 54 and 55.
As indicated in the chart, it needs updating for recent issues. But its main
improvement need is to expand its Milestone B entrance criteria beyond just
technology maturity, approved requirements, and funding. As shown in the next
chart, there are several additional risk areas that have caused problems in System
Development and Demonstration that should be addressed prior to Milestone B.

55

University of Southern California
Center for Systems and Software Engineering

•Some of these are root causes of technology immaturity

•Can address these via evidence-based Milestone B exit criteria
•Technology Development Strategy

•Capability Development Document

•Evidence of affordability, KPP satisfaction, program achievability
03/19/2008 ©USC-CSSE 55

Milestone B Focus on Technology Maturity
Misses Many OSD/AT&L Systemic Root Causes
1 Technical process (35 instances) 6 Lack of appropriate staff (23)

- V&V, integration, modeling&sim.

2 Management process (31) 7 Ineffective organization (22)

3 Acquisition practices (26) 8 Ineffective communication (21)

4 Requirements process (25) 9 Program realism (21)

5 Competing priorities (23) 10 Contract structure (20)

USD (AT&L)/SSE’s root cause analysis of system development problems has
identified a number of risk sources above that are not covered by DoDI 5000.2’s
Milestone B entrance criteria of technology maturity, approved requirements, and
funding. Some of the root causes, such as verification and validation (V&V)
shortfalls, competing priorities, lack of appropriate staff, and program realism, have
been root causes of technology maturity shortfalls, but causes of other shortfalls as
well. There are good ways to address these additional risk sources within the scope
of the current DoDI 5000.2 by placing stronger emphasis on such documents as the
Technology Development Strategy and Capability Development Document, and on
providing evidence of program achievability as well as technology maturity at
Milestone B.

56

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 56

Shared Commitments are Needed to Build Trust

• New partnerships are increasingly frequent
– They start with relatively little built-up trust

• Group performance is built on a bedrock of trust
– Without trust, partners must specify and verify details
– Increasingly untenable in a world of rapid change

• Trust is built on a bedrock of honored commitments
• Once trust is built up, processes can become more fluid

– But need to be monitored as situations change

• Competitive downselect better than cold RFP at building trust

Shared Commitments are Needed to Build Trust
This slide discusses the role of trust in partnerships to develop large software-
intensive systems. Trust is important with respect to the stakeholders of the system
as well as the development organizations, particularly for rapid adaptability to
change in DoD OODA loops. Efforts are needed to establish this trust with new
partnerships in order to be able to respond to changing requirements and
environments. This is related to the third ICM principle:

Incremental and evolutionary growth of system definition and stakeholder
commitment. This characteristic captures the often incremental discovery of
emergent requirements and solutions via methods such as prototyping,
operational exercises, and use of early system capabilities. Requirements and
commitment cannot be monolithic or fully pre-specifiable for complex,
human-intensive systems; increasingly detailed understanding, trust,
definition and commitment is achieved through an evolutionary process.

57

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 57

The Cone of Uncertainty:
Usual result of total commitment

Feasibility

Concept of
Operation

Rqts.
Spec.

Plans
and

Rqts.

Product
Design

Product
Design
Spec.

Detail
Design
Spec.

Detail
Design

Devel. and
Test

Accepted
Software

Phases and Milestones

Relative
Cost Range x

4x

2x

1.25x

1.5x

0.25x

0.5x

0.67x

0.8x

90% confidence limits:
- Pessimistic

- Optimistic ^Inadequate PDR

Better to buy information to
reduce risk

The Cone of Uncertainty: Usual result of total commitment
The Cone of Uncertainty [Boehm, 1981] used empirical data to show the degree to
which “if you don’t know exactly what you’re building, you won’t be able to
exactly predict its cost.” This view of the cone of uncertainty shows how the total
commitment process can lead to competitive bidders making optimistic assumptions
about cost. Not only does this set them and the program up for overruns, but it
reduces the resources available to perform system architecture and risk resolution by
the program’s Preliminary Design Review (PDR). Chart 36 showed the large
resulting additional rework costs that will result from this as the development of the
system proceeds.
By “buying information” early about the technology and architecture, this risk can
be reduced, thereby significantly reducing the size of the rework and the cone of
uncertainty much earlier in the development process.

58

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 58

There is Another Cone of Uncertainty:
Shorter increments are better

Uncertainties in competition,
technology, organizations,

mission priorities

There is Another Cone of Uncertainty: Shorter increments are better
Uncertainties in competition and technology evolution and changes in organizations
and mission priorities, can wreak havoc with the best of system development
programs. In addition, the longer the development cycle, the more likely it will be
that several of these uncertainties or changes will occur and make the originally-
defined system obsolete. Therefore, planning to develop a system using short
increments helps to ensure that early, high priority capabilities can be developed
and fielded and changes can be more easily accommodated in future increments.

59

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 59

ICM Stage II: Increment View

Increment N Baseline

Rapid
Change

High
Assurance

Short, Stabilized
Development
of Increment N

Increment N Transition/O&M

Short
Development
Increments

Stable Development
Increments

Foreseeable
Change (Plan)

Increment N Baseline

Rapid
Change

High
Assurance

Short, Stabilized
Development
of Increment N

Increment N Transition/O&M

Short
Development
Increments

Stable Development
Increments

Foreseeable
Change (Plan)

ICM Stage II: Increment View
The ICM is organized to simultaneously address the conflicting challenges of rapid
change and high assurance of dependability. It also addresses the need for rapid
fielding of incremental capabilities with a minimum of rework.
For high assurance, the development of each increment should be short, stable, and
provided with a validated baseline architecture and set of requirements and
development plans. The architecture should accommodate any foreseeable changes
in the requirements; the next chart shows how the unforeseeable changes are
handled.

60

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 60

ICM Stage II: Increment View
A radical idea?

Increment N Baseline

Future Increment BaselinesRapid
Change

High
Assurance

Agile
Rebaselining for
Future Increments

Short, Stabilized
Development
of Increment N

V&V
of Increment N

Increment N Transition/O&M

Current V&V

Short
Development
Increments

Future V&V

Stable Development
Increments

Continuous V&V

ConcernsArtifacts

Deferrals

Foreseeable
Change (Plan)

ResourcesResources

Increment N Baseline

Future Increment BaselinesRapid
Change

High
Assurance

Agile
Rebaselining for

Short, Stabilized
Development
of Increment N

V&V
of Increment N

Increment N Transition/O&M

Current V&V

Short
Development
Increments

Future V&V

Stable Development
Increments

Continuous V&V

ConcernsArtifacts

Deferrals

Foreseeable
Change (Plan)

ResourcesResources

Unforseeable Change
(Adapt)

No; a commercial best practice and part of DoDI 5000.2

ICM Stage II: More Detailed Increment View
The need to deliver high-assurance incremental capabilities on short fixed schedules means that each increment needs to
be kept as stable as possible. This is particularly the case for large, complex systems and systems of systems, in which a
high level of rebaselining traffic can easily lead to chaos. In keeping with the use of the spiral model as a risk-driven
process model generator, the risks of destabilizing the development process make this portion of the project into a
waterfall-like build-to-specification subset of the spiral model activities. The need for high assurance of each increment
also makes it cost-effective to invest in a team of appropriately skilled personnel to continuously verify and validate the
increment as it is being developed.
However, “deferring the change traffic” does not imply deferring its change impact analysis, change negotiation, and
rebaselining until the beginning of the next increment. With a single development team and rapid rates of change, this
would require a team optimized to develop to stable plans and specifications to spend much of the next increment’s
scarce calendar time performing tasks much better suited to agile teams.
The appropriate metaphor for addressing rapid change is not a build-to-specification metaphor or a purchasing-agent
metaphor but an adaptive “command-control-intelligence-surveillance-reconnaissance” (C2ISR) metaphor. It involves
an agile team performing the first three activities of the C2ISR “Observe, Orient, Decide, Act” (OODA) loop for the
next increments, while the plan-driven development team is performing the “Act” activity for the current increment.
“Observing” involves monitoring changes in relevant technology and COTS products, in the competitive marketplace, in
external interoperating systems and in the environment; and monitoring progress on the current increment to identify
slowdowns and likely scope deferrals. “Orienting” involves performing change impact analyses, risk analyses, and
tradeoff analyses to assess candidate rebaselining options for the upcoming increments. “Deciding” involves stakeholder
renegotiation of the content of upcoming increments, architecture rebaselining, and the degree of COTS upgrading to be
done to prepare for the next increment. It also involves updating the future increments’ Feasibility Rationales to ensure
that their renegotiated scopes and solutions can be achieved within their budgets and schedules.
A successful rebaseline means that the plan-driven development team can hit the ground running at the beginning of the
“Act” phase of developing the next increment, and the agile team can hit the ground running on rebaselining definitions
of the increments beyond.

61

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 61

V
C
R

D
C
R

I
O
C

O
C
R

F
C
R

C
C
D

RUP/ICM Anchor Points Enable Concurrent Engineering

RUP/ICM Anchor Points Enable Concurrent Engineering
This slide illustrates the Rational Unified Process (RUP) and its anchor points. The
RUP activities and anchor points were developed to support concurrent engineering
and are the basis for the ICM anchor points. In comparison to the software-
intensive RUP, the ICM also addresses hardware and human factors integration. It
extends the RUP phases to cover the full system life cycle: an Exploration phase
precedes the RUP Inception phase, which is refocused on valuation and investment
analysis. The RUP Elaboration phase is refocused on system Architecting (a term
based on the [Rechtin, 1991] analogy of system architecting to the architecting of
buildings, involving concurrent development of requirements, architecture, and
plans, to which it adds feasibility evidence); the RUP Construction and Transition
phases are combined into Development; and an additional Operations phase
combines operations, production, maintenance, and phase-out.

University of Southern California
Center for Systems and Software Engineering

03/19/2008

Common Risk-Driven Special Cases of the ICM
Special Case Example Size,

Complexity
Change
Rate %
/Month

Criticality NDI Support Org, Personnel
Capability

Key Stage I Activities : Incremental Definition Key Stage II Activities: Incremental
Development, Operations

Time per Build;
per Increment

1. Use NDI Small Accounting Complete Acquire NDI Use NDI

2. Agile E-services Low 1 – 30 Low-Med Good;
in place

Agile-ready
Med-high

Skip Valuation , Architecting phases Scrum plus agile methods of choice <= 1 day;
2-6 weeks

3. Architected
Agile

Business data
processing

Med 1 – 10 Med-High Good;
most in place

Agile-ready
Med-high

Combine Valuation, Architecting
phases. Complete NDI preparation

Architecture-based Scrum of Scrums 2-4 weeks;
2-6 months

4. Formal Methods Security kernel;
Safety-critical LSI
chip

Low 0.3 Extra High None Strong formal
methods
experience

Precise formal specification Formally-based programming
language; formal verification

1-5 days;
1-4 weeks

5. HW component
with embedded
SW

Multi-sensor
control device

Low 0.3 – 1 Med-Very
High

Good;
In place

Experienced;
med-high

Concurrent HW/SW engineering. CDR-
level ICM DCR

IOC Development, LRIP, FRP.
Concurrent Version N+1 engineering

SW: 1-5 days;
Market-driven

6. Indivisible IOC Complete vehicle
platform

Med –
High

0.3 – 1 High-Very
High

Some in place Experienced;
med-high

Determine minimum-IOC likely,
conservative cost. Add deferrable SW
features as risk reserve

Drop deferrable features to meet
conservative cost. Strong award fee
for features not dropped

SW: 2-6 weeks;
Platform: 6-18
months

7. NDI- Intensive Supply Chain
Management

Med –
High

0.3 – 3 Med- Very
High

NDI-driven
architecture

NDI-experienced;
Med-high

Thorough NDI-suite life cycle cost-
benefit analysis, selection, concurrent
requirements/ architecture definition

Pro-active NDI evolution influencing,
NDI upgrade synchronization

SW: 1-4 weeks;
System: 6-18
months

9. Hybrid agile /
plan-driven
system

C4ISR Med –
Very High

Mixed
parts:
1 – 10

Mixed parts;
Med-Very
High

Mixed parts Mixed parts Full ICM; encapsulated agile in high
change, low-medium criticality parts
(Often HMI, external interfaces)

Full ICM ,three-team incremental
development, concurrent V&V, next-
increment rebaselining

1-2 months;
9-18 months

9. Multi-owner
system of systems

Net-centric
military operations

Very High Mixed
parts:
1 – 10

Very High Many NDIs;
some in place

Related
experience, med-
high

Full ICM; extensive multi-owner team
building, negotiation

Full ICM; large ongoing
system/software engineering effort

2-4 months; 18-
24 months

10. Family of
systems

Medical Device
Product Line

Med –
Very High

1 – 3 Med – Very
High

Some in place Related
experience, med
– high

Full ICM; Full stakeholder participation
in product line scoping. Strong business
case

Full ICM. Extra resources for first
system, version control, multi-
stakeholder support

1-2 months; 9-
18 months

C4ISR: Command, Control, Computing, Communications, Intelligence, Surveillance, Reconnaissance. CDR: Critical Design Review.
DCR: Development Commitment Review. FRP: Full-Rate Production. HMI: Human-Machine Interface. HW: Hard ware.
IOC: Initial Operational Capability. LRIP: Low-Rate Initial Production. NDI: Non-Development Item. SW: Software

Common Risk-Driven Special Cases of the ICM: Because of its complexity,
ICM examples have been developed to show users how to use the framework to
create a development process appropriate for their system of interest. These cases
cover the very small to the very large as well as the use of commercial off-the-shelf
(COTS) software products to the development of a large, complex custom software
application or integrated sets of software applications. Each of these situations
presents risks at the various stages of development, some risks more critical than
others. The goal of the ICM is to identify these risks and then tailor the process to
include rigor where necessary to investigate and manage the risks and to streamline
the process when risks are negligible, allowing the development team to be more
agile when possible. This table contains a list of the special cases of the ICM and
an example of each case. Each of the special cases is described in further detail in
a companion briefing.

63

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 63

Examples of Risk-Driven Special Cases
4. Software-Embedded Hardware Component

Example: Multisensor control device

• Biggest risks: Device recall, lawsuits, production line
rework, hardware-software integration
– DCR carried to Critical Design Review level
– Concurrent hardware-software design

• Criticality makes Agile too risky
– Continuous hardware-software integration

• Initially with simulated hardware
• Low risk of overrun

– Low complexity, stable requirements and NDI
– Little need for risk reserve

• Likely single-supplier software makes daily-weekly builds feasible

Example of Risk-Driven Special Cases: Software-Embedded Hardware
Component
This slide shows the typical risks associated with this type of system development
and how the ICM can be used to either resolve or mitigate those risks. Where risks
are low, one can quickly proceed forward, sometimes even skipping risk mitigation
activities for those risks.

64

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 64

Examples of Risk-Driven Special Cases
5. Indivisible IOC

Example: Complete vehicle platform

• Biggest risk: Complexity, NDI uncertainties cause
cost-schedule overrun
– Similar strategies to case 4 for criticality (CDR,

concurrent HW-SW design, continuous integration)
– Add deferrable software features as risk reserve

• Adopt conservative (90%) cost and schedule
• Drop software features to meet cost and schedule
• Strong award fee for features not dropped

– Likely multiple-supplier software makes multi-weekly
builds more feasible

Examples of Risk-Driven Special Cases: Indivisible IOC
In cases such as a new vehicle platform where the project needs to provide a
complete vehicle for the Initial Operational Capability (IOC), there may be no
features that can be dropped to address new risks. Traditionally, a set of risk reserve
funds are recommended to be held back to address such risks as they arise.
However, experience has shown that unallocated funds are usually diverted to other
purposes and are gone by the time they are needed for risk mitigation. An
alternative approach is to allocate the risk reserve funds to the development of
borderline-priority software features, that can be deferred to future increments when
risk-mitigation funds are needed. To ensure that the risk reserve is judiciously used,
the developer should receive a significant award fee for features not dropped.

65

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 65

1

2

3

4

5

6

STAKEHOLDER
COMMITMENT
REVIEW
POINTS:

Opportunities to
proceed, skip
phases
backtrack, or
terminate Exploration Commitment Review

Valuation Commitment Review

Architecture Commitment Review

Development Commitment Revie

Operations1 and Development2
Commitment Review

Operations2 and Development3
Commitment Review

Cumulative Level of Understanding, Cost, Time, Product,
and Process Detail (Risk-Driven)

Concurrent
Engineering of
Products and
Processes

2345

EXPLORATION

VALUATION

ARCHITECTING

DEVELOPMENT

OPERATION1

OPERATION2

16

Spiral View of Incremental Commitment Model

Spiral View of the ICM
A simplified spiral model view of the ICM is provided in this slide. It avoids sources of
misinterpretation in previous versions of the spiral model, and concentrates on the five key
spiral development principles. Stakeholder satisficing is necessary to pass the stakeholder
commitment review points or anchor point milestones. Incremental growth in system
understanding, cost, time, product, and process detail is shown by the spiral growth along
the radial dimension. Concurrent engineering is shown by progress along the angular
dimension. Iteration is shown by taking several spiral cycles both to define and develop the
system. Risk management is captured by indicating that the activities’ and products’ levels
of detail in the angular dimension are risk-driven, and by the risk-driven arrows pointing out
from each of the anchor point commitment milestones.
These arrows show that the spiral model is not a sequential, unrollable process, but that it
incorporates many paths through the diagram including skipping a phase or backtracking to
an earlier phase based on assessed risk. The fourth arrow pointing toward rescoping or
halting in previous slides is omitted from view for simplicity; it would be pointing down
underneath the plane of this diagram. Other aspects of the spiral model, such as the specific
artifacts being concurrently engineered, and the use of the Feasibility Rationale are
consistent with their use in the other views, where they are easier to understand and harder
to misinterpret than in a spiral diagram. Also for simplicity, the concurrent operation of
increment N, development of increment N+1, and architecting of increment N+2 are not
shown explicitly, although they are going on.

66

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 66

Use of Key Process Principles:
Annual CrossTalk Top-5 Projects

Year Concurrent
Engineering Risk-Driven Evolutionary

Growth
2002 4 3 3
2003 5 4 3
2004 3 3 4
2005 4 4 5

Total (of 20) 16 14 15

Use of Key Process Principles
A good source of successful projects that have applied the critical success factor
principles of the ICM is the annual series of Top-5 software-intensive systems
projects published in CrossTalk from 2002 to 2005. The “Top-5 Quality Software
Projects” were chosen annually by panels of leading experts as role models of best
practices and successful outcomes. This slide summarizes each year’s record with
respect to usage of four of the six principles: concurrent engineering, risk-driven
activities, and evolutionary and iterative system growth (most of the projects were
not specific about commitments, accountability, and stakeholder satisficing). Of the
20 top-5 projects in 2002 through 2005, 16 explicitly used concurrent engineering,
14 explicitly used risk-driven development, and 15 explicitly used evolutionary and
iterative system growth, while additional projects gave indications of their partial
use.

67

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 67

Process Principles in CrossTalk 2002
Top-5 Software Projects

ICM/
Spiral

Degree

Concurrent
Requirements/

Solution Development

Risk–Driven
Activities

Evolutionary
Increment
Delivery

STARS Air Traffic
Control * Yes HCI, Safety For multiple sites

Minuteman III
Messaging

(HAC/RMPE)
* Yes Safety Yes; block

upgrades

FA-18 Upgrades * Not described Yes Yes; block
upgrades

Census Digital Imaging
(DCS2000) ** Yes Yes No; fixed delivery

date
FBCB2 Army Tactical

C3I ** Yes Yes Yes

Process Principles in CrossTalk 2005 Top-5 Software Projects
This slide provides more specifics on the 2005 top-5 projects (one star corresponds
to partial use of the principles underlying the ICM and spiral models, two stars
corresponds with strong application of the ICM and spiral model principles). Two-
page summaries of each project are provided in the January 2002 issue of
CrossTalk, available via the Internet.

68

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 68

Symbiq IV Pump ICM Process
• Exploration Phase

– Stakeholder needs interviews, field observations
– Initial user interface prototypes
– Competitive analysis, system scoping
– Commitment to proceed

• Valuation Phase
– Feature analysis and prioritization
– Display vendor option prototyping and analysis
– Top-level life cycle plan, business case analysis
– Safety and business risk assessment
– Commitment to proceed while addressing risks

Symbiq IV Pump ICM Process – Exploration and Valuation Phases
This slide summarizes the key activities for the Symbiq IV pump Exploration and
Valuation phases. It highlights the need for developing a detailed understanding of
the pump capabilities up front by using a combination of field observations and user
interface prototypes, then in the valuation phase, prioritizing features and
understanding risks going forward.

69

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 69

Symbiq IV Pump ICM Process
• Foundations Phase

– Modularity of pumping channels
– Safety feature and alarms prototyping and iteration
– Programmable therapy types, touchscreen analysis
– Failure modes and effects analyses (FMEAs)
– Prototype usage in teaching hospital
– Commitment to proceed into development

• Development Phase
– Extensive usability criteria and testing
– Iterated FMEAs and safety analyses
– Patient-simulator testing; adaptation to concerns
– Commitment to production and business plans

Symbiq IV Pump ICM Process – Foundations and Development Phases
This slide summarizes the key activities for the Symbiq IV pump Foundations and
Development phases. It highlights the need for continual analyses and feasibility
assessments as development proceeds and the decision to go into production is
made. At each milestone, risks were assessed and a commitment to go forward was
made by the key Abbott Laboratories managers and representatives of their supplier
and consumer communities, based on their particular risk/reward ratios.

70

University of Southern California
Center for Systems and Software Engineering

03/19/2008 ©USC-CSSE 70

This slide provides more detailed descriptions of the activities concurrently going
on during the various ICM phases. An FDN package contains all of the Foundations
material (in risk-driven levels of detail) needed for its independent expert review
preceding its Development Commitment Review: operations concept, requirements,
architecture, plans, business case, feasibility evidence, and risk management plans
as necessary.

