Transforming Unstructured Data into Insight for Anomaly Detection in Exploration Ground Systems

Kyongsik Yun¹, Thomas Lu¹, Shaun Heath²

¹Bio-Inspired Technologies and Systems Group, NASA Jet Propulsion Laboratory, California Institute of Technology
²Launch Site Work Control Systems, Kennedy Space Center

kyongsik.yun@jpl.nasa.gov

Ground Systems and Architecture Workshop (GSAW)
February 2019
Problems

• All communication within the firing room occurs over the intercom, relying on verbal confirmation

• System engineers have to monitor multiple screens and voice channels simultaneously, resulting in human errors
 • Example: Teams experience problems on multiple systems simultaneously. The problems appear completely irrelevant, but a later inspection concludes that the sensors on both systems are routed through a common, damaged connector.

• Analyzing multiple physical documents delay decision making in the launch process
Opportunity

• Recent advances in deep neural network architectures enable us to automatically ingest unstructured data and transform them into insight

• Our unique capability of transfer learning, incremental retraining, and data augmentation schemes now enable us to deal with highly specialized, limited amount of KSC EGS data sets

• We suggest a human-in-the-feedback-loop system that can continuously improve and adapt, based on input from engineers
Anomaly detection using appearance and motion features (divide and conquer)

MDT: Mixture Dynamic Texture (Mahadevan et al., 2010)
MPPCA: Probabilistic Principal Component Analyzers (Kim and Grauman, 2009)
Social Force: representing crowd activity patterns using optical flow (Mehran et al., 2009)
AMDN: Appearance and Motion DeepNet

Xu et al., 2017
Detecting spacecraft anomalies using LSTMs and Nonparametric Dynamic Thresholding

Hundman et al. 2018
Data augmentation using synthetic data in training neural networks for anomaly detection

Neural network performance of various real and synthetic data combinations

DOD Automated Test Object-ID and Measurement (ATOM)
AUDREY (Assistant for Understanding Data through Reasoning, Extraction, & sYnthesis)

• Uses bio-inspired hybrid neural network and symbolic reasoning
 - training large neural networks with objects, relationships, and dynamics
 - building symbolic models based on deep and organized representations

• Capabilities:
 - Simultaneously perform inference and learning in real time
 - Deal with missing or contradictory data
 - Automatically synthesize workflows to answer questions
Distributed AUDREY agents for search and rescue mission

Collaboration among multiple AUDREY agents for high-resolution video analysis

Image contrast enhancement

Training small features

Recognizing small humans

DHS Next Generation First Responder (NGFR)
AUDREY detecting a man on water for the US Coast Guard
Contextual understanding of long-term dependencies in human language
Recurrent neural network for long-term dependencies in human language

\[
\begin{align*}
 z_t &= \sigma \left(W_z \cdot [h_{t-1}, x_t] \right) \\
 r_t &= \sigma \left(W_r \cdot [h_{t-1}, x_t] \right) \\
 \tilde{h}_t &= \tanh \left(W \cdot [r_t \ast h_{t-1}, x_t] \right) \\
 h_t &= (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t
\end{align*}
\]

Graves et al. 2013, Hannun et al. 2014
Example of recurrent neural network output

Truth: tanker booster go, Prediction: tanker booster go
Test loss: 0.0259571466595
Semantic language processing

Speech Input

RNN

Autopsy 0.31
OTC 0.29

Acoustic model

Semantic language model

$P(\text{Autopsy}|\text{JRPS MS1}) = \frac{C(\text{JRPS MS1 Autopsy})}{C(\text{JRPS MS1})} = 0.0792$

$P(\text{OTC}|\text{JRPS MS1}) = \frac{C(\text{JRPS MS1 OTC})}{C(\text{JRPS MS1})} = 0.002$

JRPS MS1
OTC

Yun et al. SPIE 2018
Accurate speech-to-text and automatic report generation
Objectives

- **Accelerate anomaly detection** in the firing room for Exploration Ground Systems (EGS) at Kennedy Space Center (KSC):
 1. Build deep neural networks to transform unstructured data into insight for anomaly detection
 2. Validate the feedback loop for the continuous improvement of anomaly detection accuracy
 3. Test anomaly detection performance compared to existing human-based system
Anomaly Detection Process

Unstructured Data
- Sensor
- Image
- Voice
- Text

Deep Neural Networks
- CGAN\(^1\)
- LSTM\(^2\)
- CNN\(^3\)

System Engineers

Anomaly Detection

Feedback

Decision Making

1 Conditional Generative Adversarial Networks
2 Long Short-Term Memory
3 Convolutional Neural Networks
KSC speech/speaker recognition with the transcript-revision interface

Server

- RSTP server
- Stream.sdp
- VPN authentication
 - Transcribed data storage

Client

- Stream.sdp
 - Speech recognition
 - Speaker recognition
 - CSV data storage
 - Human revision interface

Yun et al., SPIE 2018
Speech/Speaker recognition with revision interface
Automatic generation of systems engineer’s report using AUDREY

Simulating communication between NASA Test Director (NTD) and a systems engineer reporting anomaly.

AUDREY as an assistant for NTD receives the information and analyzes it.

At the same time, AUDREY populates JSON messages to fill out the incident report.
Potential Impact

• Reduce human errors in the firing room by providing alert to system engineers about the anomaly
• Enhance the launch process by automatically transforming unstructured data into insight
• Continuously improve the anomaly detection accuracy by generating a feedback loop from engineers to the system
Path Forward

- Implement **user interface** to empower engineers to maintain awareness of surrounding data to reduce human errors
- Test the system as a support in the firing room during the launch process
- Telemetry anomaly detection for Curiosity using DSN data
- Potential commercial applications, including health care information systems and information technology industry

Primary Technical Hurdles:
- **Data augmentation** to train deep neural networks with lack of relevant data for anomaly detection
- Reliable anomaly detection algorithm development in **complex and unpredictable environment**