MACB: Machine Learning Based Anomaly Detection in 1553 Bus Commands Behavior Manipulation

Dr. Mohammad Mozumdar

Information Systems & Cyber Division
The Aerospace Corporation
What are Anomalies?

• Anomalies are **patterns** in data that do not conform to a well defined notion of normal behavior.

• N_1 and N_2 contains data points in normal behavior regions.

• Data points a_1-4 are anomalies!

• Anomaly detection is related to, but distinct from *noise removal* and *noise accommodation*, both of which deal with unwanted noise in the data.
Anomaly Detection and Challenges

• A straightforward anomaly detection approach could be to define a region representing normal behavior and declare any observation in the data that does not belong to this normal region as an anomaly. However…

 – Defining a “normal” region that encompasses every possible normal behavior is very difficult.

 – Boundary between normal and anomalous behavior is often not precise.

 – When anomalies are the result of malicious actions, the malicious adversaries often adapt themselves to make the anomalous observations appear normal.
Type of Anomalies

Anomalies can be classified into following three categories:

- **Point Anomalies:** If an individual data instance can be considered as anomalous with respect to the rest of data, then the instance is termed a point anomaly.

- **Contextual Anomalies:** If a data instance is anomalous in a specific context, but not otherwise, then it is termed a contextual anomaly.

- **Collective Anomalies:** If a collection of related data instances is anomalous with respect to the entire data set, it is termed a collective anomaly.
Supervised VS Semi-supervised VS Unsupervised Anomaly Detection

- **Supervised Anomaly Detection**: Techniques trained in supervised mode assume the availability of a training data set that has labeled instances for normal as well as anomaly classes.

- **Semi-supervised Anomaly Detection**: Techniques that operate in a semi-supervised mode, assume that the training data has labeled instances only for the normal class.

- **Unsupervised Anomaly Detection**: Techniques that operate in unsupervised mode do not require labeled training data.
Need for anomaly detector for 1553 Bus

• Globally distributed supply chain for system development
 - Supply chain attack -> malicious code injection
• Detect new hardware or software
• New behavior analysis of updated system
• Diagnostics of system flaws

• The type of solution required
 • Anomaly detection method independent of 1553 protocol implementation
 • Lightweight, highly flexible and adaptable

Aerospace solution is MACB!
MACB: Machine Learning Based Anomaly Detection for 1553 Bus Command Word Behavior Manipulation

- **MACB constructs BUS commands sequence** from the byte streams **automatically**, hence MACB doesn’t require to know the bus communications protocols beforehand.

- **MACB** uses sequence mining algorithm that derives a model representing valid transitions of commands from non-anomalous command streams.

AEROSPACE PROPRIETARY

Patent submission in process by The Aerospace Corporation
Problem Formulation: Point Anomaly in 1553 Bus Command

Possible 1553 Bus commands: 0x1821, 0x2021, 0x2422, 0x3433, 0x3041, 0x3c2e, 0x3841
Anomaly Detection - False Alarm Rate (False positive)
Thanks!