Cloud Enabled Architecture for the NESDIS Ground Enterprise

Kathryn Shontz
NOAA Office of System Architecture and Advance Planning

© 2019 by NOAA. Published by The Aerospace Corporation with permission.
End-to-End Data Management for NOAA’s Weather Enterprise

All aspects of product and data management should be taken into consideration when exploring enterprise cloud solutions.

Satellite Ground is just a piece of the NOAA enterprise which can leverage cloud computing.
Mission and Vision of NESDIS

The National Environmental Satellite, Data and Information Service (NESDIS)

OUR MISSION
... is to provide secure and timely access to global environmental data and information from satellites and other sources to both promote and protect the Nation’s environment, security, economy and quality of life.

OUR VISION
... is to expand understanding of our dynamic planet as the trusted source of environmental data.
We are moving beyond exploitation of a NOAA-centric Observing System ...
...to greater utilization of a growing global constellation of Earth Observation satellites.
NESDIS Cloud Strategic Objectives

- **Establish an approach** to investigate the potential for hosting all NESDIS ground functions in the cloud.

- **Define strategic goals** to outline a path for an integrated ground enterprise to leverage cloud technologies.

- **Cloud Pilot Projects** to support Experimentation, Migration, and Transformation activities.

NESDIS first established a Cloud Strategy Document to guide all cloud computing assessment, development and operationalization by asking: *Why not the cloud?*
NESDIS Cloud Strategy

Vision: Implement cloud-enabled end-to-end ground service capabilities that are secure, scalable, lifecycle cost effective, and data source agnostic.

Strategic goals for NESDIS Cloud Computing:

1. **Maintain continuity of operations**, products, and services
2. **Evaluate the benefits** of migrating the end-to-end ground architecture to the cloud based on trade studies, cost-benefit analysis and enterprise risk assessment
3. **Maximize use of cloud-native capabilities**
4. Implement clear governance by **defining roles and responsibilities**
5. **Define requirements** for the cloud architecture to include confidentiality, integrity and availability
6. **Compliant with security, data and acquisition regulations**
7. **Collaborate with NOAA OCIO and Line Offices** to develop a NOAA cloud utility contract
Cloud computing has already been demonstrated as a viable implementation for satellite ground compute, storage and dissemination.

Adoption of commercial cloud computing fundamentally changes the culture – and change is HARD.

NESDIS will leverage commercial cloud computing to our toolkit going forward.
Imagine a World where NESDIS Ground is Completely in the Cloud

- NESDIS is focusing on the architectural level, not current system implementation:
 1. Approach the cloud from architectural functionality
 2. Assume those functions are done completely in the cloud

- What are the technical barriers prohibiting a NESDIS migration to the cloud?
 - The resulting barriers we formulated into pilot projects

- Pilot results will guide NESDIS cloud implementation decisions
NESDIS Cloud Pilot Projects in Execution

<table>
<thead>
<tr>
<th>Project</th>
<th>Function</th>
<th>New Project Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Security in the Commercial Cloud</td>
<td>Develop NESDIS Authority to Operate (ATO) methodology to meet security standards in the commercial FedRAMP Moderate cloud by tailoring up security controls</td>
</tr>
<tr>
<td>2</td>
<td>Extension of Common Ingest, Cataloging, and Discoverability to the Cloud</td>
<td>Extend the NESDIS-built common data ingest, cataloging, and discoverability functionality to near-real time ingest and calibration/validation enterprise and demonstrate this capability in the commercial cloud</td>
</tr>
<tr>
<td>3</td>
<td>Native Ingest, Product Generation and Science Development in the Cloud</td>
<td>Demonstrate that industry cloud-native approaches for compute, storage and dissemination can be utilized in a common architecture to meet all current NESDIS system needs</td>
</tr>
<tr>
<td>4</td>
<td>Distribution Framework</td>
<td>Examine NESDIS common architecture for cloud-based data distribution that limits egress cost from the commercial cloud</td>
</tr>
</tbody>
</table>
Cloud Pilot 3 will demonstrate **cloud-native industry approaches** applied to ingest, product generation, distribution and science support.

Evaluation of operationalization will be on how well the approach meets NESDIS’ performance needs.
Secure Ingest Gateway Pilot (SIGP)

- SIGP on Amazon Web Services (AWS) provides:
 - Enterprise secure methods for ingesting data from external providers
 - Agility to modify the compute resources to meet new data source needs
 - Scalability for compute resources
 - NESDIS is transitioning SIGP into an operational capability
NESDIS Lessons Learned

TECHNOLOGY
- Commercial cloud services **can support** satellite data products & formats
- Future programs may no longer provide **end-to-end solutions**
- **Lift and shift** migration works, but is the **least effective** approach*
- Future architectures must leverage cloud native tools

RISK
- **Security controls strategy** needs to be adopted
- Confidentiality, Integrity, Availability (CIA) must be considered

PEOPLE
- Federal IT staff require **cloud training**
- Organizational culture needs to change to **realize the benefits of cloud technology**

ACQUISITION
- **Procurement strategy and processing times** need to be change to realize the benefits of the cloud

In the case of operational HPC, the results can vary. This bullet is NESDIS-specific.
THANK YOU

Kathryn Shontz, NOAA/NESDIS