Parallel Agile Software Development

Barry Boehm, USC
GSAW STEM Session
February 27, 2019
Scale by adding developers, not stretching the calendar

- Big projects don't add more sprints, they add more developers working in parallel
- Small, medium, (reasonably) large projects take the same amount of time (roughly 3 months) if enough developers are available
 - No, we can’t do an entire crisis management system in 3 months
- Merge and integrate at the end of each phase
- Test team works concurrently with developers for each phase
Get to market faster without sacrificing quality

- 3 phases: Proof of concept, MVP, Initial Release
 - Each phase approximately a month long
 - Proof of concept uses **storyboarding**, **prototyping** to discover requirements, reduce risk
 - MVP uses **UML modeling**, details sunny/rainy day scenarios, reduce technical debt
 - Initial Release focuses on **automated code generation**, **acceptance testing**, performance tuning, optimization, reduce hotfixes
Database access code doesn't get written manually

in round numbers this might be 20-40% of your code
Current status

- 2014-2015 Location Based Advertising (75 students)
 - Implemented commercially; discontinued due to low sales
- 2015 Picture Sharing (12 students)
 - Experiment comparison with Architected Agile project
 - PA project faster, less effort; comparable performance
- 2016-2018 CarmaCam (75 students)
 - In LA-Metro experimental use for bus-lane monitoring
 - Several additional organizations, applications interested
- 2017-2018 TikiMan Go Game project (25 students)
 - Being prepared for commercial application
Large Scale PA Critical Success Factors

- Three Team approach; similar to Bosch ART approach
 - Agile Rebaselining: Keeper Of The Project Vision/Architecture
 - USC: Rosenberg: Ensure MVC compliance, rainy-day use cases
 - TRW: Systems Engineering team; Handle all concurrency
 - Developers and Product Owners:
 - Rapid concurrent development
 - Independent Verification and Validation
 - Continuous across development
TRW Large-Scale PA Experience

- Walker Royce: 1-million SLOC Command-Control System
- Extensive early architecture and risk resolution; all concurrency done by 10 experts
 - 47 sequential-Ada programmers; Executing Arch. Skeleton
- Neil Siegel: several even-larger systems
 - Very high productivity; low error rate
 - Proof of value: worse productivity, error rate when new customer forced traditional approach; full productivity resumed when original approach resumed
STEM Aspects

• Computer Science
 – Model-View-Controller architecture

• Software Technology
 – Automatic code generation

• Software Engineering
 – Storyboarding, prototyping, 3-team approach

• Mathematics
 – Statistically-based cost estimation model
Parallel Agile and USC STEM Efforts

• Masters students
 – Learn about new technologies
 – Learn how to apply them

• PhD students
 – Learn how to create new technology
 – Learn how to test hypotheses about its effects