Ground Systems Architecture Workshop 2006

Experience With Expanding Air Force Satellite Control Interoperability

1st Lt Rob Thompson, USAF Van Husson, Honeywell DataLynx Ken Riley, Universal Space Network

Version 2.1

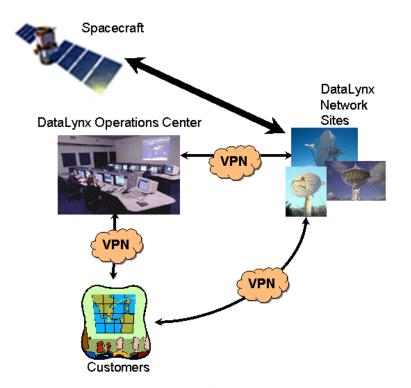
GSAW 2006

Background

- US govt goal to achieve interoperability among satellite control networks
 - Air Force Satellite Control Network (AFSCN), NASA, NOAA
 - Effort since 2001 to define, develop, and test standards
 - Interagency and commercial adoption of open, CCSDS and TCP/IP-based standards in progress
 - Demo'd AF use of NASA and NOAA ground stations in past
- Recent AF efforts focused use of commercial networks
 - Received funding designated to explore feasibility of augmenting AFSCN with commercial TT&C providers
 - Two commercial contracts awarded
 - Universal Space Network and Honeywell DataLynx
 - Develop and check out SGLS and USB at existing ground sites
 - Perform operational passes for designated satellites
 - Other supporting efforts
 - Enhance COTS equipment to support new standards
 - Provide facility and ops support within R&D satellite operations centers at Schriever AFB (CERES) and Kirtland AFB (RSC)
 - Prepare feasibility report (with 50 SW)

Outline

- Configuration, results, future directions for:
 - DataLynx
 - Universal Space Network
- Government observations

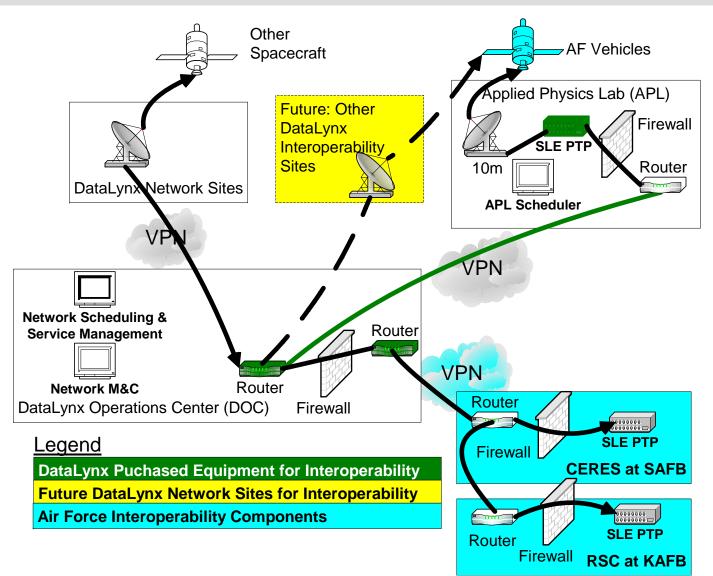

March 28, 2006

Expanding Interoperability between the AFSCN and Commercial Networks

DataLynx Network

- Provides a single point of interface for a globally distributed network
- Provides full range of TT&C services for:
 - Launch and early orbit
 - Routine mission operations
 - Contingency operations
- Part of the NASA Ground Network
 - First to receive NASA Security Certification
 - 40 passes a day with Polar network
- Conducts ground network architectural trade studies
- Proven interoperability with NASA, NOAA, ESA, CSA, CNES, JAXA, and DLR
- In the process of demonstrating AFSCN interoperability

Project Tasks


Completed

- Procure and test T1 link between DOC and APL (DataLynx)
- Install and train on SLE scheduling system (DataLynx)
- Procure, configure, install SLE front ends (joint DataLynx/Govt)
- Procure T1 link between DOC and CERES (Govt)
- Document security and submit for DAA approval (Govt)

Future

- Obtain AF approval to connect (Govt)
- Perform test passes (joint)
- Perform operational passes (joint)

DataLynx Network Configuration

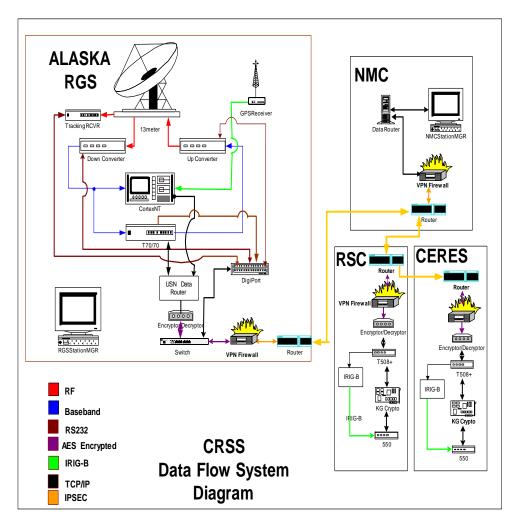
Results to Date

- Contact Activities
 - Completed successful ground loopback tests with command echo and BERT
 - Completed passive receive contact with DSCS III
 - Awaiting government approval for live checkout passes
- Lessons Learned
 - PTP products delivered and worked as specified
 - Long lead times needed for government actions
 - Security and connectivity approvals can be long pole
 - Configuring DataLynx and APL for AF satellite contact parameters was straightforward

What's Next

- Short Term
 - Resolve any technical issues in the APL Engineering Phase
 - Enter into the DataLynx APL Operational Phase and take 200 operational passes
- Long Term
 - Extend the interoperability to foreign DataLynx network sites (e.g. West Freugh, Scotland)
 - Address concerns regarding foreign technology release and military use of foreign systems

Provide a cost effective, standards-based capability to augment the AFSCN for non-sensitive mission support.


Universal Space Network (USN)

- USN Owned And Collaborative Stations
- Multiple Bands/Formats: Universal S Band, SGLS, X Band, Ku Band
- Supports Commercial Satellite Launch, Early Orbit, And State Of Health
- Augments NASA Ground Network
- Provides X Band Downlink For DoD And NASA Spacecraft
- Demonstrates New Ground System Compatibility With Existing Spacecraft
- Demonstrating Feasibility Of Augmenting The Air Force Satellite Control Network

USN CRSS Configuration

- USN Invested By Adding A SGLS Capability To Its Alaska Station
 - SGLS 500w Amplifier
 - S-band Up Converter
 - S-band Down Converter
 - RT Logic T70/70
 - Cortex NT
- USN Network Is IP Based
- Connectivity Between AF SOCs and USN Network Management Center Is Via IP Over Dedicated T1 Links
 - Circuits Protected Via VPNs
 - SOC-To-Spacecraft
 Communications Encrypted
 - DAA Certified

CRSS CY2005 Goals

- Integrate And Test RSC With USN Alaska Ground Station
- Integrate And Test CERES With USN Alaska Ground Station
- Conduct Developmental Passes For:
 - Commanding (Including Time Critical)
 - Telemetry (Including Time-Data Correlation)
 - Ranging
- Conduct Operational Passes To Certify Operational Suitability
 - TSX-5 -- POAM
 - DSCS II –- GPS
 - DSCS III
- Refine The Scheduling Interface Between The SOC And USN Network Management Center

CRSS Results Summary

VEHICLE	RSC Passes	CERES Passes	Time Critical Cmnd	Ranging Accuracy	Ops Qualified
TSX-5	28 / 31*	0	NA	Variable	Yes*
POAM	27 / 30	0	NA	NA	Yes
DSCS II	0	22 / 27	NA	NA	Yes
DSCS III	0	42 / 45	4/4	Good Std Deviation; High Bias?	Yes
Total passes	55 / 61	64 / 72	4/4		
Success Rate*	90%	89%	100%		

*Success = met all TT&C ops qual criteria, except did not satisfy TDC for TSX-5

Results Demonstrated Commercial Network Can Meet Technical Requirements To Support DoD Spacecraft

CRSS Results Assessment

- Failed Supports Due To:
 - Ranging Receiver Unable To Hold Lock
 - Network Socket Connection Problems
 - Definitive Hardware Failure
 - Control Center Inability To Command
 - Operator Error
- Lessons Learned
 - Time-Data Correlation: difficult to achieve AFSCN unique function with COTS equipment not designed for this
 - Lack of public standards for AFSCN complicates integration of equipment from different vendors
 - Air Force approval to test satellites was difficult to obtain, even for "Test And Check Out" satellites (had to drop GPS)
 - Scheduling interface needs an operational environment to fully test
 - AFSCN ranging difficult to accomplish at same time as commanding

Way Ahead

- Beginning CRSS Phase 3
 - Installing Standards-Based Comm Front End At Alaska Ground Station
 - Expected To Resolve TDC Issues
 - Implementing first USB Commanding Capability for AF
 - Potential Wideband Gapfiller Support
 - Conducting 200 Operational Passes From Alaska Ground Station To Assess Performance Of New Configuration
- Addressing Foreign Siting Concerns Thru OSD Space Policy
 - Received Government Of Australia Approval To Support Missile Defense Agency NFIRE Spacecraft
 - Obtaining Government Of Australia Approval To Support DoD's Wideband Gap Filler Program With Both SGLS And USB
 - Obtaining Government Of Sweden Approval To Support The Space Based Space Surveillance Spacecraft And Other DoD Missions
- Working Operational Security And DAA Accreditation Issues
 - Supporting SMC/SN Efforts To Obtain DAA Accreditation For Interface Between USN Network And Air Force Satellite Operations Centers

USN Goal: Provide A Proven Capability To Support Designated AFSCN Missions--Augment AFSCN Capabilities Or Capacity As Needed

Government Observations

- Commercial networks (when augmented for SGLS) can successfully support non-sensitive AFSCN missions
 - Some technical features (not needed by most missions) remain to be addressed by new standards
- Equipment vendors are willing and able to incorporate new standards into COTS equipment
 - More complete assessment of COTS products is underway
- Commercial augmentation lowers cost by sharing use of existing commercial sites, equipment, comm, NOC, etc.
- Future direction requires agreements among stakeholders to resolve issues
 - Security and policy approvals for use of commercial systems to support DoD missions are controversial and time consuming
 - Foreign sites have additional issues
 - Potential role of NASA and NOAA networks
 - Time frame for implementing interoperability

Acknowledgements

- Satellite Control Network Contract (SCNC) Interoperability Team
- Space and Missile Systems Center (SMC)/SNAI
- The Aerospace Corporation
- Global Science & Technology (GST)
- SMC Det 12
 - R&D Support Complex (RSC)
 - Space Test and Engineering Contract (STEC) operations
 - Center for Research Support (CERES)
 - CERES Engineering, Development & Sustainment (EDS) contract
- Avtec
- RT Logic
- Johns Hopkins University/Applied Physics Laboratory (JHU/APL)