
Service Oriented Architecture (SOA)
Implementation Framework for Satellite
Mission Control System Software Design

GSAW2006
28th March 2006

Soon Hie Tan
K I Thimothy

Nanyang Technological University Singapore

Concept of Service Oriented Architecture
(SOA)

• SOA is an architectural style which emphasizes well-defined, loosely
coupled, coarse-grained, business centric, reusable shared services

• Services are well-defined encapsulations of business assets which
are described using standard and network based interfaces

• SOA is a distributed computing environment in which
services/components interact on a peer-peer basis using
standardized interfaces

• SOA is an evolution of the component based architecture, interfaced
based design (Object Oriented Design) and the Distributed Object
System Design – the concept is therefore not new but it is rapidly
emerging as the premier integration and architecture framework for
today’s complex, heterogeneous computing environment of the
business enterprises

Service Oriented Architecture (SOA)
Implementation

• No standard reference model for SOA yet
• SOA shares the main concept of

– Services
– Service Descriptions
– Advertising and Discovery
– Specification of an Associated Data Model
– Use of Service Contract

• The objective of SOA design is flexible and effective interoperation of coarse grained
services so as to facilitate the composition, orchestration, encapsulation and
management of the resultant business applications

• The de-facto SOA implementation framework today is the document-centric,
messaging, service based distributed computing system commonly known as XML
Web Services

Evolution of SOA Concept

• Monolithic Design
– Relative unstructured procedural coding

• Structured & Object Oriented Design
– Program units based on functionalities

• Client Server (Two-Tier) Design
– Bundling of functionalities into two tiers
– Concept of remoting and distributed design

• Distributed Object (Multi-Tier) Design
– Distributed object design
– Object interactions in heterogeneous environment

• Component Object Model Architecture
– Aggregation of objects into logical components with well defined, strongly

typed interface
• Service Oriented Architecture

– Aggregations of components to provide reusable coarse grained business
functionalities

– Interactions of coarse grained services with less strongly typed but standard
based interfaces for flexible and effective interoperations

SOA Implementation Framework – The XML
Web Services

• Generally SOA has a message oriented middleware system which supports a well
organized work flow definition to facilitate service interoperation

• To interoperate between services from multiple enterprises, SOA needs to provide
service level agreements and operational policies

• Typically the Enterprise Service Bus (ESB) of the SOA is a message broker with
standard based messaging protocol to enable interoperability between the coarse
grained services. The communication layer provides reliable
synchronous/asynchronous secure messaging to allow the services to interoperate
through a connection layer

• A specific SOA implementation can be found in the XML Web Services
implementation framework

• XML Web Services use HTTP protocol and XML based SOAP messaging system to
provide SOA using a standard service interface based on the Web Services
Description Language (WSDL), Universal Description, Discovery and Integration
(UDDI), electronic business XML (ebXML), Security Assertion Markup Language
(SAML) and Web Service Security (WS-Security)

System Design Considerations in SOA
Implementations

• Distributed object systems provide stateful/stateless, singleton/singlecall
fine-grained components with strongly typed interfaces for each component

• Distributed objects are tightly coupled over synchronous connections
(typically in intranet environment)

• Web Services provide stateless, singlecall coarse-grained applications with
less strongly typed interfaces and late bindings for data

• Web Services operate over loosely coupled synchronous/asynchronous
connections (typically over internet)

• Web Services are not suitable for real-time or near real-time applications
due to performance and QoS considerations. Distributed object systems fit
in more naturally in such applications

• Web Services are not necessary if there is no need to offer services to
external parties or to compose and orchestrate business applications from
services available from multiple enterprises over the network

• Interoperation (and hence system integration) is the prime design objective
for Web Services but distributed object systems also strive to achieve
interoperability between components

• Portability of both software systems assists in the solution of interoperation
and integration problems with existing non-remotable and legacy systems

X-Sat Mission Control System Design

• The satellite control software architecture incorporates the main concept of
SOA to build an enterprise strength system for mission critical services

• Uses distributed computing architecture to build services using multiple
middleware systems comprising
– Tightly coupled distributed object systems for real-time or near real-time

mission control services
– Loosely coupled document-centric messaging systems (Web Services)

for information technology (IT) services
• Assumes operation in a heterogeneous computing environment and

additional interoperation requirements due to the use of COTS software
packages, existing legacy information systems and embedded systems in
ground system equipment

Ground System Architecture for TT&C

ConScan
Autotrack Feed

Antenna Controller

EL/AZ/XEL Actuators
POS Sensors

S-Band Antenna
Up/Down

Converters

Demod/Mod
CCSDS

Processor

Orbit Tracking & Display
Mission Planning

Services

Spacecraft
Simulation Services

TM/TC
Services

Database
Services

Client-Server Distributed Computing
System For LAN/Internet

Embedded Processors with
TCP/IP Connectivity

Integral Systems
Explorer 12000 6.1m
Groundstation

Enertec 3801-20

PCs/Workstations
Windows/Linux/Unix Intranet/Internet

Client Applications

Web
Services

NT VxWorks

The Client Server model

• Business Logic Tier (Groundstation Services)
• Client Tier (GUI, Presentation)
• Back-end EIS Tier (COTS Packages, Database servers and Legacy

Information Systems, Embedded processors)
• Platform used – Windows, Linux, Unix in PCs/Workstations

Middleware for Implementing
Distributed Computing Systems

• Tightly coupled distributed object systems using following frameworks -
.NET Remoting (C#), DCOM (C++, VB), J2SE RMI/IIOP (Java), J2SE IDL
CORBA (Java), J2EE EJB (Java), ORBacus/OmniORB CORBA (C++, Java,
Python)

• Loosely coupled document-centric messaging systems using .NET XML
Web Services (C#) and J2EE based JAX-RPC XML Web Services (Java)

• The use of multiple middleware frameworks ensures vendor neutrality and
long project life cycle by guarding against product obsolescence

• The software system design can capitalize on the strengths and features of
the different distributed object frameworks so as to achieve ease of
implementation and overall system performance.

Types of Interoperations used in System
Integration

• Out-of-Process Interoperation between different distributed computing
systems across different platforms (interoperation across process and
machine boundaries)
– Distributed Object System interoperation (between .NET Remoting,

J2SE RMI/IIOP, J2EE EJB, CORBA) is achieved by adding an IIOP
channel to .NET Remoting

– Web Services are able to interoperate due to their basic design for SOA
• In-Process Interoperation (interoperation within process boundary) between

managed and unmanaged codes inside and outside of Virtual Machine
Frameworks and In-Process Interoperation in other Native-OS Frameworks

• Interoperation with COTS packages (e.g. STK, Matlab Engine), Legacy
systems, database servers & embedded processors in the EIS Tier based
on out-of-process or in-process interoperation methods

Software System Portability

• In-Process Interoperation with non-remotable or legacy packages is greatly
facilitated by the portability of the server tier software development
framework

• “Write Once, Run Everywhere” – e.g. Java J2SE/J2EE, .NET (if the Mono
Project for Linux/Unix is considered a usable framework compatible to .NET
under Windows). Portability is enabled through the use of Virtual Machines
(JVM, CLR) for the targeted platforms.

• “Write Once, Compile & Run Everywhere” – e.g. Qt & CORBA. Portability is
enabled through source codes and compilers for use with the available
framework for the targeted platforms.

Conclusions

• Service/component interoperability and software system portability are the
key requirements for accomplishing the necessary system integration
process used to compose and orchestrate business services

• Overall system design can achieve a service oriented architecture design
concept at either the service or component levels of granularities,
depending on the nature of the services

• This approach is more effective than the uniform use of the Web Services
implementation framework for implementing all services and the use of
adaptors for re-architecturing existing/legacy components to service level
functionalities in order to conform with the generally accepted SOA design
concepts.

