Diversity Benefits for Millimeter Wave Satellite Communications, with Cloud Correlation Functions

Paul Christopher
PFC Associates
Leesburg, VA 20175

pfchristop@aol.com

Outline

- Barbaliscia's 49/22 GHz Worldwide Attenuation maps
- New 6 to 100 GHz Function, for new maps
- Compare GEO, Molniya Att'n at 30 GHz
- Examine MolniyaGEO at 30- 45, 90-100 GHz for Iceland, NY, and Rio.
- Discuss Soviet Cloud Correlation Functions
 - -Use to predict site diversity advantages, with modest attenuation, good reliability at 90 GHz (Rain Correlation Functions, Appendix)

Barbaliscia's 99% Non Rainy Zenith Attenuation at 22.2 GHz World Wide (note ROME, Miami, S.America)

Barbaliscia 's 22.2 GHz Zenith Attenuation for N. Hemisphere

Barbaliscia's 99% Non Rainy Zenith Attenuation at 49.5 GHz vs LON, LAT

49.5 GHz Zenith Attenuation for N. Hemisphere

3 Phased Molniya for Continuous Coverage

MolniyaGEO Attenuation at 30 GHz

MolniyaGEO Attenuation for N.Hemisphere at F= GHz, by Barbaliscia, LIEBE

Soviet Cloud Autocorrelation Function v. Distance (km) Boldyref and Tulupov

Observations on Soviet Cloud Autocorrelation Function

- R(x) drops to ZERO at 200 km
 - -- and NEGATIVE at 300 km
 - -- as observed by strong switched diversity results against rain (Hatsuda, Baltimore APS, 96)
 - --Not accounted for with ITU diversity attenuation
- R(x) drops to 0.4 at 32-40 km
 - -- Good cloud relief for Millimeter Wave Satellite Systems

Availability from Boldyrev and Tulupov Cloud Correlation Function

Availability with 2 sites= AV2=

$$1 - (1 - av1)^{2-0.2} e^{-x} - e^{-0.036} x_{+e}^{-0.015} x_{-0.8} e^{-0.003} x_{Cos} [0.0075 x]$$

Where x=site separation, km

with av1=availability with 1 site= 0.90 for typical 90 GHz satellite link av2= availability with 2 separated, switched diversity sites

-- b. and Much Higher Availability with 0.99 Single Link

Superior Availability with 4 Sites

 $1 - \left(\, (1 - av1)^{\, 2 - 0.2 \, e^{-x} - e^{-0.036 \, x} + e^{-0.015 \, x} - 0.8 \, e^{-0.003 \, x} \, \text{Cos} \left[0.0075 \, x \right] \, \right)^{\, 2 - 0.2 \, e^{-x} - e^{-0.036 \, x} + e^{-0.015 \, x} - 0.8 \, e^{-0.003 \, x} \, e^$

--and Much Higher Availability with 0.99 Single Link as 3dB at 45 GHz; 9dB at 90 GHz

Conclusions for Diversity Discussion

- Barbaliscia's non-rainy attenuation results were invaluable, as basis for deriving estimates of zenith attenuation for 6-100 GHz.
- Constellations with high elevation allow the low attenuation to be realized.
 - -both Molniya and GEO are well understood, and behaved.
- Boldyrev and Tulupov's cloud correlation function (Slide 7)
 allowed high availability (>0.999) to be achieved with modest
 diversity
 - -e.g, 45 GHz, 25 km dual sites, 3 dB; 90GHz, 25 km, 9 dB
 - and, the site separation combats rain; R(x) as 8km (Appendix)
- Your cloud correlation functions will be of interest.