Institute for Software Research
UNIVERSITY OF CALIFORNIA, |IRVINE

IS

Reference Architectures:
A Research Perspective

Eric Dashofy — John Georgas — Scott Hendrickson
Institute for Software Research

University of California, Irvine

http://mwww.isr.uci.edu/

Institute for Software Research -
I S UniversiTy ofF CaLiFORNIA, IRVINE sr.uci.edu/

Obligatory Definitions Slide

A software system’s architecture is the set of
principal design decisions about the system.
- Examples:
- Structural decisions

- Concurrency decisions
- Management decisions

A reference architecture is the set of principal
design decisions that are simultaneously applicable
to multiple related systems, typically within an
application domain, with explicitly defined points of

variation.

ISR -tiieifoRsoithargiieesieh
Empirical Data on the use of
Reference Architectures

e Some successes...

Koala Component Model
e Increase design understandability, architectural longevity, code quality.

e Success in finding implementation violations of architectural principles and
increase in reuse.

[ss

e Reusable building blocks resulting in 24% to 80% reuse across related
products.

OMG/CCSDS (Consultative Committee for Space Data Systems)
e Developing reference architecture for control, services, etc.
e Benefits for (OTS) reuse, simulation/analysis, interoperability

e But, do it with care...
SEI study on deficient reference architectures.

Institute for Software Research : :
I S UnitversiTy oF CALIFORNIA, [RVINE w.isr.uci.edu/

Domain: Software Defined Radio (SDR)

e Work with The Boeing Company

e Increase capabilities
of radios

e General-purpose
hardware (DSP,
GPP)

e Special purpose
software per-application

Called “waveforms”

e One waveform per channel

Institute for Software Research - -
I S R UniversiTy oF CALIFORNIA, [RVINE disr.uci.edu/

The Official Reference Architecture

e The “software communications architecture” (SCA)
e Developed by JTRS program
e CORBA-based

Mandated use of a CORBA ORB for component communication
Primarily a detailed set of CORBA interfaces for components that
might be part of an SDR

e Declared goals
Component portability
Component reuse
Reduced cost via leveraging commercial standards

Institute for Software Research - -
I S UniversiTy oF CALIFORNIA, [RVINE isr.uci.edu/

The Adequacy of the SCA

e Good for portability and reusability

e Questionable for many other important
gualities

“Doability”—what guidance is provided on how to actually
build a working radio?

e What proof is there that this specification can even be used
to create a working radio?

Efficiency—is CORBA really the right choice here?
Correctness—what kind of analyses are possible?
Deployability, scalabilty, compatibility...

Institute for Software Research - -
I S R UniversiTy oF CALIFORNIA, [RVINE disr.uci.edu/

More Power from the Research Community:
Product-line archltecture modeling

Receiver Component

AM FM || > Variant Element
Receiver | O | Receiver |

Hardware Bus

R
I

Audio Controller|}Video Controller! } Optional Elements

e Variant elements are always included but their type varies
e Optional elements may or may not be included
e Elements may be both optional and variant

CETETT T TR -
| E—

\
e
Tiote? -BGE-(node2)____
ekt L S,
i

! i
i i
1 chorusResourcel |
i
i

node Devicelanager

nodeZlogger_DCE:

5071 350F -8305-
44 A5-BE65-

BAOCEACBOTDS

dsr.uci.edu/

e Modeling
multiple
deployments

Graphically
Simultaneously

e ldentifying
latent
deficiencies

e Providing

stronger

artifacts for
review &

communicatio

i Optionally
=l 5 deployed and Benefits:
connected 1.
| component o Explicit |
| - modeling using
a real ADL
gives users a
concrete picture
I.1L _E £l "-.'. Of their
o o[]S, software
| : =L _i 1 e Product-line
_ facilities let
— — users visually
| | P L see and

% variations

nodeZlogger_DCE:
5071350F-8305

44 AG-B965-

Institute for Software Research - -
I S R UniversiTy ofF CaLiFORNIA, IRVINE sr.uci.edu/

Lessons from the Acquisition Perspective

e Carefully understand what your reference architecture is good
for (and not good for)

e Optimize for the most important qualities
Portability doesn’t matter so much if you can’t make it work right

e Derive the RA from existing working systems if possible

If not, then lengthen your cycle time to validate the RA and permit for
serious revisions & extensions

e Keep realistic expectations about commercial technologies
What are you really buying? At what cost?
Are there research technologies that can be developed?

e Give implementers/developers a serious stake in the future of
the architecture

e Consider investing in architecture-centric tools

Institute for Software Research : :
I S UniversiTy oF CALIFORNIA, [RVINE w.isr.uci.edu/

References

e OMG Space Domain Task Force
http://www.omg.org/space/

e Rob van Ommering. “Software Reuse in Product Populations”.

e A.V. Fioukov, E.M. Eskenazi, D.K. Hammer, M.R.V. Chaudron. “Evaluation of
Static Properties for Component-Based Architectures”

e Frank van der Linden and Jurgen K. Muller: “Creating Architectures with
Building Blocks”.

e Brian P. Gallagher. “Using the Architecture Tradeoff Analysis Method to
Evaluate a Reference Architecture: A Case Study.”
http://www.sei.cmu.edu/publications/documents/00.reports/00tn007.html

e ArchStudio 3 Website:
http://www.isr.uci.edu/projects/archstudio/

e XADL 2.0 Website

http://www.isr.uci.edu/projects/xarchuci/

