
Moving from 4+1 to the 5+2 View
Modeling of Architecture:

ULCMsm Views as Extensions of
Architectural Views

Dr. Peter Hantos
The Aerospace Corporation

© 2003-2006. The Aerospace Corporation. All Rights Reserved.

ACE4 Working Group Session, March 29, 2006

GSAW/ACE4 2006 – Peter Hantos Slide 1-2

Acknowledgements

• This work would not have been possible without the following:
Feedback
– Dr. Sergio Alvarado, Software Architecture & Engineering Department
– Suellen Eslinger, Software Engineering & Acquisition Subdivision
– Dr. Leslie J. Holloway, Software Acquisition and Process Department

Funding source
– The Aerospace Corporation Independent Research & Development

(IR&D) Program

GSAW/ACE4 2006 – Peter Hantos Slide 1-3

Agenda

• Problem/Goal/Objectives
• The 4+1 View Model of Software Architecture
• Evolution of Architecture Artifacts in Iterative Development

Snapshots of views associated with architecture evolution
Concurrent development of artifacts in Iterative Development

• Unified Life Cycle Modeling (ULCMsm)
ULCM – The 10,000-foot view
The Spiral Model’s ULCM generator view using UML activity diagrams
ULCM enactment view of pre-planned increments

• Integrating the Views - A Little “View Algebra”
• Conclusions
• Acronyms
• References
• Backup Slides

® UML is registered in the U.S. Patent and Trademark Office by the OMG
sm ULCM is Service Mark of The Aerospace Corporation

GSAW/ACE4 2006 – Peter Hantos Slide 1-4

Problem Statement

• Process Architecting is not well aligned with System and
Software Architecting

Separately and together they are high-leverage activities of
acquisition and development
Alignment would result in
– Earlier identification and better management of problems
– Ultimately, reduced life cycle cost

GSAW/ACE4 2006 – Peter Hantos Slide 1-5

Presentation Goal and Objectives

• Goal
Show a key aspect of synergy between Architecture
Views and Unified Life Cycle Modeling (ULCM) Views

• Objectives
Review how Architecture Views evolve during acquisition
and development
Present ULCM Views*
Integrate ULCM Views with P. Kruchten’s 4+1 View
Model of Architecture**

Sources:
* (Hantos 2005), (Hantos 2006)
** (Kruchten 1995)

GSAW/ACE4 2006 – Peter Hantos Slide 1-6

The 4+1 View Model of Software Architecture

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

VIEW* DETAIL STAKEHOLDERS COMMENTS
LOGICAL Subsystems,

Classes

End User Functionality

IMPLEMENTATION Components,
Packaging,

Layering

Developer,
Project Manager

Used to be called
Development

View
DEPLOYMENT Topology,

Mapping to
Platforms

System Engineer Used to be called
Physical

View
PROCESS Performance,

Throughput,
Concurrency

System Integrator It is a Computer
Engineering

term
USE CASE Architecture

Discovery,
View Validation

Analyst,
Tester

Sometimes
called

Scenarios
 __

* Diagram and view names based on (Kruchten 1998). The author apparently instituted some name
changes for selected views since the first publication (See Kruchten 1995).

GSAW/ACE4 2006 – Peter Hantos Slide 1-7

Challenging Booch …

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

ImplicitImplicit
Temporal Temporal
Notion*Notion*

__
* Emphasis by Hantos

This implicit temporal notion does not reflect the complete dynamicsThis implicit temporal notion does not reflect the complete dynamics

• “The 4+1 view model has proven to be both necessary
and sufficient for most interesting systems”
--- Grady Booch, IBM Fellow

GSAW/ACE4 2006 – Peter Hantos Slide 1-8

Snapshots of Views Associated With Architecture
Evolution

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

Time

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

…

Development Milestones (Anchor Points)

Architecture evolution is reflected in view evolutionArchitecture evolution is reflected in view evolution

GSAW/ACE4 2006 – Peter Hantos Slide 1-9

Concurrent Development of Artifacts in Iterative
Development

Use CasesUse Cases

Class DiagramsClass Diagrams

Deployment DiagramsDeployment Diagrams

Activity & State DiagramsActivity & State Diagrams

Package DiagramsPackage Diagrams

Code

Selected Artifacts

100%0%

1st Cycle 2nd Cycle 3rd Cycle

Legend:
Effort %

GSAW/ACE4 2006 – Peter Hantos Slide 1-10

ULCM – The 10,000-Foot View

• ULCM is a highly intuitive, pattern-based approach for
specifying, constructing, visualizing and documenting
the life cycle processes of software-intensive system
development

• ULCM aspires to be the “Occam’s Razor” of Life Cycle
Modeling

The medieval rule of parsimony: “Plurality shouldn’t be
assumed without necessity”
– William of Ockham, 14th century philosopher

The LCM rule of parsimony: All Life Cycle Models are
constructs or derivatives of 4 basic LCM patterns

• ULCM defines two views of life cycle models
Generator View
– Algorithmic and sequencing aspects

Enactment View
– Temporal or trace dimension

GSAW/ACE4 2006 – Peter Hantos Slide 1-11

Determine
Objectives

Determine
Alternatives/Constraints

Risk
Analysis

Risk
Resolution

Conduct
Review

YES

NO

Commitment?

Develop, Verify
Next Level of Product

Risk-Based
Decisions

Plan
Next Phases

(Increment) Release
Cycles

Determine
Objectives

Determine
Alternatives/Constraints

Risk
Analysis

Risk
Resolution

Conduct
Review

YES

NO

Commitment?

Develop, Verify
Next Level of Product

Risk-Based
Decisions

Plan
Next Phases

Determine
Objectives

Determine
Alternatives/Constraints

Risk
Analysis

Risk
Resolution

Conduct
Review

YES

NO

Commitment?

Develop, Verify
Next Level of Product

Risk-Based
Decisions

Plan
Next Phases

Anchor Point
Cycles

Implementation
(Iteration) Cycles

Progress
through
steps

Requirements plan
life-cycle plan

Risk
analy-

sis

Software
requirements

Plan next phases

Determine
objectives,
alternatives,
constraints

Proto-
type1

Detailed
design

Commitment
partition

Development
plan

Integration
and test
plan

Risk
analysis

Risk
analysis

Risk
analysis

Prototype2
Prototype3

Operational
prototype

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Simulations, models, benchmarks

Requirements
validation

Software
product
design Unit

test

Code

Design validation
and verification Integration

and test
Acceptance
test

Implementation Develop, verify
next-level product

Review

Concept of
operation

The Spiral Model’s ULCM Generator View Using
UML Activity Diagrams

View shows activity sequencing and concurrency details of incrementsView shows activity sequencing and concurrency details of increments

Sources:
* Spiral Diagram: (Boehm 1988)
** Nested Spirals: (Hantos 2006)

Boehm’s Spiral Diagram*

GSAW/ACE4 2006 – Peter Hantos Slide 1-12

System

Increment1
Increment2

Increment3
Increment4
Increment5

Potential
Evolutionary

Increment

View shows temporal dimension:
timing, duration, and synchronization of increments

View shows temporal dimension:
timing, duration, and synchronization of increments

ULCM Enactment View of Pre-planned Increments

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

LOGICAL
VIEW

IMPLEMENTATION
VIEW

DEPLOYMENT
VIEW

PROCESSPROCESS
VIEWVIEW

USE CASEUSE CASE
VIEWVIEW

GSAW/ACE4 2006 – Peter Hantos Slide 1-13

Integrating the Views - A Little “View Algebra”

• Why is Kruchten’s Model called the 4+1 View Model?
The first 4 views are independent
Use Cases of the 5th view cross-cut across the other views
– Initially used for discovery and design the architecture
– Later they can be used to validate the integrity of the views

• How would ULCM Views fit into this structure?
The Generator View would be a 5th, independent view
The Enactment View has an overarching function
– As such, it should belong to the “+” category, similarly to the

Use Case View
• And the result is:

5+2 View Model5+2 View Model

GSAW/ACE4 2006 – Peter Hantos Slide 1-14

Conclusions

• Architectural View Models are not static during the
acquisition and development life cycle

• Life Cycle Models are key in ensuring the synergy across
Architecture Evolution, Elaboration, and Evaluation

• In view modeling ensuring integrity across views is critical
The solution is to use overarching, cross-cutting views

• Using ULCM ensures the consistent level of modeling
formality of architecture and life cycle models

The use of these views could provide direct help to our
SMC/NRO customers in implementing the guidelines of the
current Software Development Standard for Space Systems
(Adams 2005)

GSAW/ACE4 2006 – Peter Hantos Slide 1-15

Acronyms

DBMS Data Base Management System
IEEE Institute of Electrical and Electronics Engineers
IR&D Independent Research & Development
OMG Object Management Group
TCP/IP Transmission Control Protocol/Internet Protocol
ULCM Unified Life Cycle Modeling
UML Unified Modeling Language

GSAW/ACE4 2006 – Peter Hantos Slide 1-16

References

Adams, R.J., et al, Software Development Standard for Space
Systems, TOR-2004(3909)-3537, Revision B

Boehm, B. W., A Spiral Model of Software Development and
Enhancement, IEEE Computer, May 1998

Hantos, P., Unified Life Cycle Modeling Tutorial, INCOSE 2005,
Rochester, New York, July 2005

Hantos, P., Interpreting the Spiral Model of Software-Intensive
System Development – A ULCMSM Approach, CSER 2006, Los
Angeles, California, April 2006 (To be published)

Kruchten, P. B., The 4+1 View Model of Architecture, IEEE
Software, November 1995

Kruchten, P.B., The Rational Unified Process An Introduction,
Addison-Wesley, 1998

Backup Slides

GSAW/ACE4 2006 – Peter Hantos Slide 1-18

Logical and Implementation View Examples

Screens Computations DBMS Reporting

System

• Implementation 1:
– Mainframe with display terminal

• Implementation 2:
– Client/Server – using “thin client”

• Implementation 3:
– Client/Server – using dedicated database server

Components of Implementation 1

Screens

<<executable>>
system.exe

Computations

Reporting

DBMS

<<file>>
screens.c

<<file>>
computations.c

<<file>>
reporting.c

<<file>>
dbms.c

Design Model Implementation Model
compilationobjects

Screens

<<executable>>
server.exe

Computations

Reporting

DBMS

<<file>>
screens.c

<<file>>
computations.c

<<file>>
reporting.c

<<file>>
dbms.c

Design Model Implementation Model
compilation

<<executable>>
thin_client.exe

objects

Components of Implementation 2

Screens

<<executable>>
dbms.exe

Computations

Reporting

DBMS

Design Model Implementation Model
compilation

<<executable>>
client.exe

<<file>>
screens.c

<<file>>
computations.c

<<file>>
reporting.c

<<file>>
dbms.c

objects

Components of Implementation 3

GSAW/ACE4 2006 – Peter Hantos Slide 1-19

Packages and Layers Example for Implementation 3

ClientClient

Java
Applet

Java Virtual
Machine

TCP/IP

Application-specific layer

Middleware layer

Application-general layer

System-software layer

Screens Computations Reports

GSAW/ACE4 2006 – Peter Hantos Slide 1-20

Deployment Views: Evaluating Deployment Options

Deployment of Implementation 3 Using One PC

:Screens

:Computations

:Reporting

:DBMS

TCP/IP

TCP/IP

Single Windows PC

Server

Deployment of Implementation 3 on Multiple PCs

:Screens

:Computations

:Reporting

:DBMS

TCP/IP

TCP/IP

Windows PCs

Server

Deployment of Implementation 2 Using Multiple PCs

:Computations

:Reporting

:DBMS

TCP/IP TCP/IP

Multiple Windows PCs

Server

:Screens

:DBMS
:DBMS

Deployment of Implementation 3 Using
Distributed Servers

:Screens

:Computations

:Reporting

:DBMS

TCP/IP

TCP/IP

Single Windows PC Distributed Servers

GSAW/ACE4 2006 – Peter Hantos Slide 1-21

Boehm’s Spiral Model

Progress
through
steps

Requirements plan
life-cycle plan

Risk
analy-

sis

Software
requirements

Plan next phases

Determine
objectives,
alternatives,
constraints

Proto-
type1

Detailed
design

Commitment
partition

Development
plan

Integration
and test
plan

Risk
analysis

Risk
analysis

Risk
analysis

Prototype2
Prototype3

Operational
prototype

Cumulative
cost

Evaluate alternatives,
identify, resolve risks

Simulations, models, benchmarks

Requirements
validation

Software
product
design Unit

test

Code

Design validation
and verification Integration

and test
Acceptance
test

Implementation Develop, verify
next-level product

Review

Concept of
operation

GSAW/ACE4 2006 – Peter Hantos Slide 1-22

<< client >>

1

<< interface >>

2

<< server >>

5

<< server >>

3

<< server >>

4

<< client >>

test

<< interface >>

2

<< server >>

test

<< client >>

1

<< interface >>

2

<< server >>

test
<< client >>

1

<< interface >>

2

<< server >>

3

Increment1

Increment2 Increment3

Increment Planning Example with Risk-based
Considerations

GSAW/ACE4 2006 – Peter Hantos Slide 1-23

Software Development Standard for Space Systems

Relevant references from the Standard:
5.6 Software design

“… if the system is developed in multiple builds, its design may not
be fully defined until the final build. Software design in each
build is interpreted to mean the design necessary to meet the
software item requirements to be implemented in that build”

G.3 Scheduling deliverables
“To the maximum extent possible … leaving the door open for

incremental delivery of software products, staggered
development of software items…”

5.18.2 Joint management reviews
“The developer shall plan and take part in joint management

reviews…”
Appendix E: Candidate joint management reviews

E.3.4b “The architectural design of the system/segment/…”
E.3.6b “The architectural design of a software item”

GSAW/ACE4 2006 – Peter Hantos Slide 1-24

All trademarks, service marks, and trade names are the
property of their respective owners

