
4/1/04 ©USC-CSE 1

University of Southern California
Center for Software EngineeringC S E

USC

Barry Boehm, USC
Keynote Address, GSAW 2004

April 1, 2004

Spiral Acquisition of Defense and Space
Systems of Systems

4/1/04 ©USC-CSE 2

University of Southern California
Center for Software EngineeringC S E

USC

Outline

• Trends in Defense and Space Systems of Systems
• Role of Spiral Development

– Concurrent engineering of requirements and architecture;
systems and software

– Emphasis on risk management
• Example system-of-systems top-10 risk list

– Representative risks and mitigations
• Conclusions

4/1/04 ©USC-CSE 3

University of Southern California
Center for Software EngineeringC S E

USC

Trends in Defense Software-Intensive Systems
• Transformational, network-centric systems

– These are fundamentally software-intensive
• Emphasis on joint, interoperable, capability-based

systems
– And increasingly, systems of systems

• Increasing requirements emergence, COTS-dependence,
environmental change

• Traditional sequential acquisition practices increasingly
inadequate
– Fixed-requirements, -cost, -schedule contracting
– Waterfall legacies: MIL-STD-1521B, parts of Software

CMM

4/1/04 ©USC-CSE 4

University of Southern California
Center for Software EngineeringC S E

USC

Waterfall Legacies: SW CMM v.1.1
• Requirements Management, Ability 1:
 “Analysis and allocation of the system

requirements
is not the responsibility of the

software engineering group
but is a prerequisite for their work.”

• Concurrent engineering emphasized in
CMMI, DoDD 5000.1, DoDI 5000.2

4/1/04 ©USC-CSE 5

University of Southern California
Center for Software EngineeringC S E

USC

Resulting Project Social Structure

SOFTWARE

MGMT.

AERO. ELEC. G & C

MFG.

COMM PAYLOAD

I wonder when
they'll give us our
requirements?

4/1/04 ©USC-CSE 6

University of Southern California
Center for Software EngineeringC S E

USC

DoDI 5000.2 “Spiral Development”
Section 3.3.2.1

• Desired capability is identified
– End-state requirements not initially known

• Requirements refined through
demonstration and risk management
– Continuous user feedback
– Each increment provides user the best possible

capability
• Requirements for future increments depend

on feedback from users and technology
maturation

4/1/04 ©USC-CSE 7

University of Southern California
Center for Software EngineeringC S E

USC

What Is The Win Win Spiral Model?
• A stakeholder-driven and risk-driven process model

generator
– There are no one-size-fits-all software process models
– Different stakeholders and different risks generate different

process models
• A way to perform controlled concurrent engineering

– Of systems and software; of development and evolution; of product
and process

– Controlled by anchor point milestones and Feasibility Rationales
• An upward-compatible extension of the Rational Unified

Process
– Common risk and anchor-point orientation
– With stakeholder and value-based extensions
– Used successfully on a wide variety of applications

• A way to implement DoDD 5000.1 and DoDI 5000.2

4/1/04 ©USC-CSE 8

University of Southern California
Center for Software EngineeringC S E

USC

Original Spiral and Misinterpretations

•Common Misinterpretations

– Hack some prototypes
– Fit spiral into waterfall
– Incremental waterfalls
– Suppress risk analysis
– No concurrency, feedback
– One-size-fits-all model

4/1/04 ©USC-CSE 9

University of Southern California
Center for Software EngineeringC S E

USC

The FCS Win-Win Spiral Model
1b. Stakeholders
Identify System
Objectives, Constraints,
& Priorities (OC&Ps);
Alternative Solution
Elements

1a. Identify
Success-Critical
Stakeholders

2a. Evaluate
Alternatives
with respect to
OC&Ps

2b.
Assess,
Address
Risks

3. Elaborate
Product and
Process
Definition4. Verify and Validate

Product and Process
Definitions

Stakeholders’

Commitment
4

5

6

8

2

1

Stakeholders’
Review

7

3

L COL CA

Build
2

Build
3

Progress Through Steps

Bl1

Driven By:

Success-
critical

stakeholders’
win

conditions

Risk
Management

Spiral anchor
point

milestones

Feasibility
Rationale

4/1/04 ©USC-CSE 10

University of Southern California
Center for Software EngineeringC S E

USC

I
R
R

L
C
A

I
O
C

P
R
R

L
C
O

C
C
D

The WWSM Enables Concurrent Engineering

4/1/04 ©USC-CSE 11

University of Southern California
Center for Software EngineeringC S E

USC

Pass/Fail Feasibility Rationales
• Evidence provided by developer and validated by

independent experts that:
If the system is built to the specified architecture, it will
– Satisfy the requirements: capability, interfaces,

level of service, AND evolution
– Support the operational concept
– Be buildable within the budgets and schedules in

the plan
• All major risks resolved or covered by risk

management plans
• Serves as basis for stakeholders’ commitment to

proceed

4/1/04 ©USC-CSE 12

University of Southern California
Center for Software EngineeringC S E

USC

Effect of Unvalidated Requirements
-15 Month Architecture Rework Delay

$100M

$50M

Arch. A:
Custom
many cache processors

Arch. B:
Modified
Client-Server

1 2 3 4 5

Response Time (sec)

Original Spec After Prototyping

Available budget

4/1/04 ©USC-CSE 13

University of Southern California
Center for Software EngineeringC S E

USC

Effect of Waterfall SEMP and Spiral SDP
• Delays in starting critical software

infrastructure
– OS, networking, DBMS, transaction processing, …

• Infeasible infrastructure
– Premature performance requirements (e.g., 1

second)
• Premature hardware selection overconstrains

software
– Can also induce premature COTS commitments

• Waterfall-based progress payments
undermine-spiral tasks
– Develop prototypes or get paid for specifications

4/1/04 ©USC-CSE 14

University of Southern California
Center for Software EngineeringC S E

USC

Top-10 Risks: Software-Intensive
Systems of Systems

- CrossTalk, May 2004

1. Acquisition management and staffing
2. Requirements/architecture feasibility
3. Achievable software schedules
4. Supplier integration
5. Adaptation to rapid change
6. Quality factor achievability and tradeoffs
7. Product integration and electronic upgrade
8. Software COTS and reuse feasibility
9. External interoperability
10. Technology readiness

4/1/04 ©USC-CSE 15

University of Southern California
Center for Software EngineeringC S E

USC

Effect of Software Underrepresentation

Original

SW

Sensors

SW

Networks

SW

WMI

C4ISR Sys Engr Platforms

PM

New

Sensors Networks

SW

C4ISR Software Sys Engr

PM

•Software risks discovered too late

•Slow, buggy change management

•Recent large project reorganization

SW SWSW

SW

Software

SW SW

4/1/04 ©USC-CSE 16

University of Southern California
Center for Software EngineeringC S E

USC

Need for CRACK Integrated Team
Members

- CrossTalk, December 2003

• Not Collaborative: Discord, frustration, loss of
morale

• Not Representative: Delivery of unacceptable
systems, late rework

• Not Authorized: Authorization delays,
unsupported systems

• Not Committed: Missing homework,
discontinuities, delays

• Not Knowledgeable: Unacceptable systems,
delays, late rework

4/1/04 ©USC-CSE 17

University of Southern California
Center for Software EngineeringC S E

USC

Effect of Unvalidated Software Schedules
• Original goal: 18,000 KSLOC in 7 years

– Initial COCOMO II, SEER runs showed infeasibility
– Estimated development schedule in months for closely

coupled SW with size measured in equivalent KSLOC
(thousands of source lines of code):
Months =~ 5 * 3√KSLOC

108725033- Months

10,00030001000300- KSLOC

•Solution approach: architect for decoupled parallel development;
Schedule As Independent Variable (SAIV) process

4/1/04 ©USC-CSE 18

University of Southern California
Center for Software EngineeringC S E

USC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Percent of Time Added for Architecture and Risk Resolution

Pe
rc

en
t o

f T
im

e
A

dd
ed

 to
 O

ve
ra

ll
Sc

he
du

le

How Much Architecting Is Enough?
-A COCOMO II Analysis

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

10000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Sweet Spot Drivers:

Rapid Change: leftward

High Assurance: rightward

4/1/04 ©USC-CSE 19

University of Southern California
Center for Software EngineeringC S E

USC

The SAIV* Process Model
1. Shared vision and expectations management
2. Feature prioritization
3. Schedule range estimation and core-capability determination

- Top-priority features achievable within fixed schedule with 90% confidence

4. Architecting for ease of adding or dropping borderline-priority
features
- And for accommodating past-IOC directions of growth

5. Incremental development
- Core capability as increment 1

6. Change and progress monitoring and control
- Add or drop borderline-priority features to meet schedule

– Cross Talk, January 2002 (http://www.stsc.hill.af.mil/crosstalk)

*Schedule As Independent Variable; Feature set as dependent variable
– Also works for cost, schedule/cost/quality as independent variable

4/1/04 ©USC-CSE 20

University of Southern California
Center for Software EngineeringC S E

USC

Supplier Integration:
Rapid Adaptability to Change

• Risk #4/5. Inflexible subcontracting will be a major source
of delays and shortfalls.

• Strategy #4/5. Develop subcontract provisions enabling
flexibility in evolving deliverables. Develop an award fee
structure based on objective criteria for:

- Schedule Preservation
- Cost Containment
- Technical Performance
- Architecture and COTS Compatibility
- Continuous Integration Support
- Program Management
- Risk Management

4/1/04 ©USC-CSE 21

University of Southern California
Center for Software EngineeringC S E

USC

Top-10 Risks: Software-Intensive
Systems of Systems

- CrossTalk, May 2004

1. Acquisition management and staffing
2. Requirements/architecture feasibility
3. Achievable software schedules
4. Supplier integration
5. Adaptation to rapid change
6. Quality factor achievability and tradeoffs
7. Product integration and electronic upgrade
8. Software COTS and reuse feasibility
9. External interoperability
10. Technology readiness

4/1/04 ©USC-CSE 22

University of Southern California
Center for Software EngineeringC S E

USC

Rapid, Synchronous Software Upgrades
• Risk #7. Out-of-synchronization software upgrades will be a

major source of operational losses
– Software crashes, communication node outages, out-of-

synch data, mistaken decisions
– Extremely difficult to synchronize multi-version, distributed,

mobile-platform software upgrades
– Especially if continuous-operation upgrades needed

• Strategy #7a. Architect software to accommodate continuous-
operation, synchronous upgrades

– E.g., parallel operation of old and new releases while
validating synchronous upgrade

• Strategy #7b. Develop operational procedures for synchronous
upgrades in software support plans

• Strategy #7c. Validate synchronous upgrade achievement in
operational test & evaluation

4/1/04 ©USC-CSE 23

University of Southern California
Center for Software EngineeringC S E

USC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1997 1998 1999 2000 2001

Year

% COTS-
based USC
e-services

projects

COTS: The Future is Here
• Escalate COTS priorities for research, staffing, education

– It’s not “all about programming” anymore
– New processes required

4/1/04 ©USC-CSE 24

University of Southern California
Center for Software EngineeringC S E

USC

COTS Upgrade Synchronization and
Obsolescence

• Risk #8a: Many subcontractors means a proliferation of
evolving COTS interfaces

• Risk #8b: Aggressively-bid subcontracts can lead to
delivery of obsolete COTS
– New COTS released every 8-9 months (GSAW)
– COTS unsupported after 3 releases (GSAW)
– An actual delivery: 120 COTS; 46% unsupported

• Strategy #8a: Emphasize COTS interoperability in
source selection process

• Strategy #8b: Contract provisions ensuring delivery of
refreshed COTS products.

4/1/04 ©USC-CSE 25

University of Southern California
Center for Software EngineeringC S E

USC

Conclusions

• Defense and space systems undergoing transformation
• Need emphasis on spiral systems engineering
• Need to integrate systems and software engineering
• Spiral approach enables concurrent engineering

– And emphasis on risk management
• New systems of systems risks emerging

– And new mitigation approaches

4/1/04 ©USC-CSE 26

University of Southern California
Center for Software EngineeringC S E

USC

References
B. Boehm, W. Hansen, “The Spiral Model as a Tool for Evolutionary
Acquisition,” Cross Talk, May 2001.

B. Boehm, D. Port, “Balancing Discipline and Flexibility with the Spiral Model
and MBASE,” CrossTalk, December 2001, pp. 23-28.

B. Boehm et al., “Using the Win Win Spiral Model: A Case Study,” IEEE
Computer, July 1998, pp. 33-44.

B. Boehm, D. Port, L. Huang, and W. Brown, “Using the Spiral Model and
MBASE to Generate New Acquisition Process Models: SAIV/ CAIV, and
SCQAIV,” CrossTalk, January 2002, pp. 20-25.

D. Reifer and B. Boehm, “A Model Contract/Subcontract Award Fee Plan for
Large, Change-Intensive Software Acquisitions,” USC-CSE Technical Report,
April 2003.

B. Boehm, A.W. Brown, V. Basili, and R. Turner, “Spiral Acquisition of Software-
Intensive Systems of Systems,” Cross Talk, May 2004, pp. 4-9.

MBASE web site : sunset.usc.edu/cse/pub/research/mbase

Spiral/EA workshops web site : www.sei.cmu.edu/cbs/spiral2000

CrossTalk articles: www.stsc.hill.af.mil/crosstalk

